
32-Bit RISC MICROPROCESSOR

TX39 FAMILY CORE ARCHITECTURE

USER'S MANUAL

Jul. 27, 1995

R3000A is a Trademark of MIPS Technologies, Inc.

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No

responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may

result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA

or others.

The products described in this document contain components made in the United States and subject to export control

of the U.S.authorities. Diversion contrary to the U.S. law is prohibited.

These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication

equipment, measuring equipment, domestic electrification, etc.).Please make sure that you consult with us before you

use these TOSHIBA products in equipments which require high quality and/or reliability, and in equipments which

could have major impact to the welfare of human life (atomic energy control, airplane, spaceship, traffic signal,

combustion control, all type of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may

occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with

TOSHIBA,

1995 TOSHIBA CORPORATION

All Rights Reserved.

CONTENTS

i

CONTENTS

Architecture

Chapter 1 Introduction--- 3

1.1 Features -- 3

1.1.1 High-performance RISC techniques -- 3

1.1.2 Functions for embedded applications--- 3

1.1.3 Low power consumption --- 4

1.1.4 Development environment for embedded arrays and cell-based ICs ---------- 4

1.2 Notation Used in This Manual --- 5

Chapter 2 Architecture --- 7

2.1 Overview-- 7

2.2 Registers-- 8

2.2.1 CPU registers--- 8

2.2.2 System control coprocessor (CP0) registers --- 9

2.3 Instruction Set Overview--10

2.4 Data Formats and Addressing --15

2.5 Pipeline Processing Overview---18

2.6 Memory Management Unit (MMU)---19

2.6.1 R3900 Processor Core operating modes--- 19

2.6.2 Direct segment mapping -- 20

Chapter 3 Instruction Set Overview--23

3.1 Instruction Formats --23

3.2 Instruction Notation --23

3.3 Load and Store Instructions ---24

3.4 Computational Instructions---27

3.5 Jump/Branch Instructions --32

3.6 Special Instructions --35

3.7 Coprocessor Instructions ---36

3.8 System Control Coprocessor (CP0) Instructions -----------------------------38

CONTENTS

ii

Chapter 4 Pipeline Architecture---39

4.1 Overview--39

4.2 Delay Slot---40

4.2.1 Delayed load --- 40

4.2.2 Delayed branching-- 40

4.3 Nonblocking Load Function --41

4.4 Multiply and Mupliply/Add Instructions (MULT, MULTU, MADD, MADDU) --41

4.5 Divide Instruction (DIV, DIVU) --42

4.6 Streaming---42

Chapter 5 Memory Management Unit (MMU)---43

5.1 R3900 Processor Core Operating Modes--------------------------------------43

5.2 Direct Segment Mapping ---44

Chapter 6 Exception Processing ---47

6.1 Overview--47

6.2 Exception Processing Registers--50

6.2.1 Cause register --- 51

6.2.2 EPC (Exception Program Counter) register-- 52

6.2.3 Status register --- 53

6.2.4 Cache register --- 56

6.2.5 Status register and Cache register mode bit and exception processing -------- 58

6.2.6 BadVAddr (Bad Virtual Address) register--- 60

6.2.7 PRId (Processor Revision Identifier) register -- 60

6.2.8 Config (Configuration) register -- 61

6.3 Exception Details ---63

6.3.1 Memory location of exception vectors --- 63

6.3.2 Address Error exception -- 64

6.3.3 Breakpoint exception--- 65

6.3.4 Bus Error exception -- 66

CONTENTS

iii

6.3.5 Coprocessor Unusable exception -- 68

6.3.6 Interrupts -- 69

6.3.7 Overflow exception --- 70

6.3.8 Reserved Instruction exception-- 70

6.3.9 Reset exception --- 71

6.3.10 System Call exception--- 72

6.3.11 Non-maskable interrupt --- 72

6.4 Priority of Exceptions --73

6.5 Return from Exception Handler ---73

Chapter 7 Caches --75

7.1 Instruction Cache---75

7.2 Data Cache --76

7.2.1 Lock function --- 77

7.3 Cache Test Function---79

7.4 Cache Refill --80

7.5 Cache Snoop --81

Chapter 8 Debugging Functions --83

8.1 System Control Processor (CP0) Registers -----------------------------------83

8.2 Debug Exceptions --87

8.3 Details of Debug Exceptions---90

Appendix A Instruction Set Details ---93

CONTENTS

iv

TMPR3901F

Chapter 1 Introduction--- 201

1.1 Features -- 201

1.2 Internal Blocks--- 203

Chapter 2 Configuration -- 205

2.1 R3900 Processor Core-- 205

2.1.1 Instruction limitations ---206

2.1.2 Address mapping --206

2.2 Clock Generator -- 206

2.3 Bus Interface Unit (Bus Controller / Write Buffer)-------------------------- 207

2.4 Memory Protection Unit --- 208

2.4.1 Registers---208

2.4.2 Memory protection exception ---210

2.4.3 Register address map --211

2.5 Debug Support Unit -- 211

2.6 Synchronizer --- 211

Chapter 3 Pins -- 215

Chapter 4 Operations-- 217

4.1 Clock--- 217

4.2 Read Operation --- 219

4.2.1 Single read --219

4.2.2 Burst read--221

4.3 Write Operation --- 224

4.4 Interrupts-- 225

4.4.1 NMI*---225

4.4.2 INT[5:0]*--226

CONTENTS

v

4.5 Bus Arbitration--- 227

4.5.1 Bus request and bus grant---227

4.5.2 Cache snoop --228

4.6 Reset -- 229

4.7 Half-Speed Bus Mode--- 230

Chapter 5 Power-Down Mode --- 231

5.1 Halt mode--- 231

5.2 Standby Mode --- 233

5.3 Doze Mode --- 234

5.4 Reduced Frequency Mode --- 235

Architecture

1

Architecture

Architecture

2

Architecture

3

Chapter 1 Introduction

1.1 Features

The R3900 Processor Core is a high-performance 32-bit microprocessor core developed by Toshiba based on

the R3000A RISC (Reduced Instruction Set Computer) microprocessor. The R3000A was developed by

MIPS Technologies, Inc.

Toshiba develops ASSPs (Application Specific Standard Products) using the R3900 Processor Core and

provides the R3900 as a processor core in Embedded Array or Cell-based ICs. The low power consumption

and high cost-performance ratio of this processor make it especially well-suited to embedded control

applications in products such as PDAs (Personal Digital Assistants) and game equipment.

1.1.1 High-performance RISC techniques

• R3000A architecture

− R3000A upward compatible instruction set (excluding TLB (translation lookaside buffer)

instructions and some coprocessor instructions)

− Five-stage pipeline

• Built-in cache memory

− Separate instruction and data caches

− Data cache snoop function: Invalidatation of data in the data cache to maintain cache memory

and main memory consistency on DMA transfer cycles

• Nonblocking load

− Execute the following instruction regardless of a cache miss caused by a preceding load

instruction

• DSP function

− Multiply/Add (32-bit x 32-bit + 64-bit) in one clock cycle.

1.1.2 Functions for embedded applications

• Small code size

− Branch Likely instruction:The branch delay slot accepts an instruction to be executed at the

branch target

− Hardware Interlock: Stall the pipeline at the load delay slot when the instruction in the slot

depends on the data to be loaded

Architecture

4

• Real-time performance

− Cache Lock Function: Lock one set of the two-way set associative cache memory to keep data in

cache memory

• Debug support

− Breakpoint

− Single step execution

• Real-time debug system interface

1.1.3 Low power consumption

• Power Down mode

− Prepare for Reduced Frequency mode: Control the clock frequency of the R3900 Processor Core

with a clock generator

− Halt and Doze mode: Stop R3900 Processor Core operations

• Clock can be stopped

− Clock signal can be stopped at high state

1.1.4 Development environment for embedded arrays and cell-based ICs

• Compact core

• Easy-to-design peripheral circuits

− Single direction separate bus: Bus configuration suitable for core

− Built-in cache memory: No need to consider cache operation timing

• ASIC Process

• Sufficient Development Environment

Architecture

5

1.2 Notation Used in This Manual

Mathematical notation

• Hexadecimal numbers are expressed as follows (example shown for decimal number 42)

0x2A

• A K(kilo)byte is 210 = 1,024 bytes, a M(mega)byte is 220 = 1,024 x 1,024 = 1,048,576 bytes, and a

G(giga)byte is 230 = 1,024 x 1,024 x 1,024 = 1,073,741,824 bytes.

Data notation

• Byte: 8 bits

• Halfword: 2 contiguous bytes (16 bits)

• Word: 4 contiguous bytes (32 bits)

• Doubleword: 8 contiguous bytes (64 bits)

Signal notation

• Low active signals are indicated by an asterisk (*) at the end of the signal name (e.g.: RESET*).

• Changing a signal to active level is to “assert” a signal, while changing it to a non-active level is to “de-

assert” the signal.

Architecture

6

2.

Architecture

7

Chapter 2 Architecture

2.1 Overview

A block diagram of the R3900 Processor Core is shown in Figure 2-1. It includes the CPU core, an

instruction cache and a data cache. You can select an optimum data and instruction cache configuration for

your system from among a variety of possible configurations.

The CPU Core comprises the following blocks:

• CPU registers : General-purpose register, HI/LO register and program counter (PC).

• CP0 registers : Registers for system control coprocessor (CP0) functions.

• ALU/Shifter : Computational unit.

• MAC : Computational unit for multiply/add.

• Bus interface unit : Control bus interface between CPU core and external circuit.

• Memory management unit : Direct segment mapping memory management unit.

Figure 2-1. Block Diagram of the R3900 Processor Core

CPU core

R3900 Processor Core

Memory

Management UnitMAC

ALU/Shifter

CP0 Register

CPU Register

Bus Interface Unit

Data CacheInstruction Cache

Architecture

8

2.2 Registers

2.2.1 CPU registers

The R3900 Processor Core has the following 32-bit registers.

• Thirty-two general-purpose registers

• A program counter (PC)

• HI/LO registers for storing the result of multiply and divide operations

The configuration of the registers is shown in Figure 2-2.

The r0 and r31 registers have special functions.

• Register r0 always contains the value 0. It can be a target register of an instruction whose

operation result is not needed. Or, it can be a source register of an instruction that requires a value

of 0.

• Register r31 is the link register for the Jump And Link instruction. The address of the instruction

after the delay slot is placed in r31.

The R3900 Processor Core has the following three special registers that are used or modified

implicitly by certain instructions.

 PC : Program counter

 HI : High word of the multiply/divide registers

 LO : Low word of the multiply/divide registers

The multiply/divide registers (HI, LO) store the double-word (64-bit) result of integer multiply

operations. In the case of integer divide operations, the quotient is stored in LO and the remainder in

HI.

Figure 2-2. R3900 Processor Core registers

r2

r1

r0

31 0

LO

HI

PC

31 0

31 0

31 0

Multiply/Divide registers

Program counter

General-purpose registers

.

.

.

.

r31

r30

r29

Architecture

9

2.2.2 System control coprocessor (CP0) registers

The R3900 Processor Core can be connected to as many as three coprocessors, referred to as CP1,

CP2 and CP3. The R3900 also has built-in system control coprocessor (CP0) functions for exception

handling and for configuring the system. Figure 2-3 shows the functional breakdown of the CP0

registers.

Figure 2-3 CP0 registers

EPC register

BadVAddr register

Status register

Debug register†

Cache register†

Config register†

<Debugging>

<Exception Processing>

†Additional R3900 Processor Core

 registers not present in the R3000A

PRld register

Cause register

DEPC register†

Architecture

10

Table 2-1 lists the CP0 registers built into the R3900 Processor Core. Some of these registers are reserved

for use by an external memory management unit.

Table 2-1. List of system control coprocessor (CP0) registers

No Mnemonic Description

0

- (reserved) †

1

- (reserved) †

2

- (reserved) †

3

Config†† Hardware configuration

4

- (reserved) †

5

- (reserved) †

6

- (reserved) †

7

Cache†† Cache lock function

8

BadVAddr Last virtual address triggering error

9

- (reserved) †

10 - (reserved) †

11 - (reserved) †

12 Status Information on mode, interrupt enabled, diagnostic status
13 Cause Indicates nature of last exception
14 EPC Exception program counter
15 PRId Processor revision ID
16 Debug††† Debug exception control
17 DEPC††† Program counter for debug exception
18
 |
31

- (reserved) †

† Reserved for external memory management unit, when direct segment mapping
MMU is not used.

†† Additional R3900 Processor Core register not present in R3000A.
††† Additional R3900 Processor Core Debug register not present in R3000A.

Architecture

11

2.3 Instruction Set Overview

All R3900 Processor Core instructions are 32 bits in length. There are three instruction formats: immediate

(I-type), jump (J-type) and register (R-type), as shown in Figure 2-4. Having just three instruction formats

simplifies instruction decoding. If more complex functions or addressing modes are required, they can be

produced with the compiler using combinations of the instructions.

op Operation code (6 bits)
rs Source register (5 bits)
rt Target (source or destination) register, or branch condition (5 bits)
rd Destination register (5 bits)
immediate Immediate, branch displacement, address displacement (16 bits)
target Branch target address (26 bits)
sa Shift amount (5 bits)
funct Function (6 bits)

Figure 2-4. Instruction formats and subfield mnemonics

immediatertrsop

31 26 25 21 20 16 15 0

targetop

31 26 25 0

functrd sartrsop

31 26 25 21 20 16 15 11 10 6 5 0

R-type (Register)

J-type (Jump)

I-type (Immediate)

Architecture

12

The instruction set is classified as follows.

(1) Load/store

These instructions transfer data between memory and general registers. All instructions in this group

are I-type. “Base register + 16 bit signed immediate offset” is the only supported addressing mode.

(2) Computational

These instructions perform arithmetic, logical and shift operations on register values. The format can

be R-type (when both operands and the result are register values) or I-type (when one operand is 16-

bit immediate data).

(3) Jump/branch

These instructions change the program flow. A jump is always made to a 32 bit address contained in

a register (R-type format), or to a paged absolute address constructed by combining a 26-bit target

address with the upper 4 bits of the program counter (J-type format). In a branch instruction, the

target address is made up of the program counter value plus a 16 bit offset.

(4) Coprocessor

These instructions execute coprocessor operations. Each coprocessor has its own format for

computational instructions.

Note : Coprocessor load instruction LWCz and coprocessor store instruction SWCz are not

supported by the R3900 Processor Core. An attempt to execute either of these instructions

will trigger a Reserved Instruction exception.

(5) Coprocessor 0

These instructions are used for operations with system control coprocessor (CP0) registers, processor

memory management and exception handling.

Note : TLB (Translation Lookaside Buffer) instructions (TLBR, TLBWJ, TLBWR and TLBP) are

not supported by the R3900 Processor Core. These instructions will be treated by the R3900

as NOP(no operation).

(6) Special

These instructions support system calls and breakpoint functions. The format is always R-type.

Architecture

13

The instruction set supported by all MIPS R-Series processors is listed in Table 2-2. Table 2-3 shows

extended instructions supported by the R3900 Processor Core, and Table 2-4 lists coprocessor 0 (CP0)

instructions.

Table 2-5 shows R3000A instructions not supported by the R3900 Processor Core.

Table 2-2. Instructions supported by MIPS R-Series processors (ISA)

Instruction Description

Load/Store Instructions
LB Load Byte
LBU Load Byte Unsigned
LH Load Halfword
LHU Load Halfword Unsigned
LW Load Word
LWL Load Word Left
LWR Load Word Right
SB Store Byte
SH Store Halfword
SW Store Word
SWL Store Word Left
SWR Store Word Right
Computational Instructions
(ALU Immediate)
ADDI Add Immediate
ADDIU Add Immediate Unsigned
SLTI Set on Less Than Immediate
SLTIU Set on Less Than Immediate Unsigned
ANDI AND Immediate
ORI OR Immediate
XORI XOR Immediate
LUI Load Upper Immediate
 (ALU 3-operand, register type)
ADD Add
ADDU Add Unsigned
SUB Subtract
SUBU Subtract Unsigned
SLT Set on Less Than
SLTU Set on Less Than Unsigned
AND AND
OR OR
XOR XOR
NOR NOR

Architecture

14

Table 2-2(cont.). Instructions supported by MIPS R-Series processors (ISA)

Instruction Description

 (Shift)
SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable
SRLV Shift Right Logical Variable
SRAV Shift Right Arithmetic Variable
 (Multiply/Divide)
MULT Multiply
MULTU Multiply Unsigned
DIV Divide
DIVU Divide Unsigned
MFHI Move from HI
MTHI Move to HI
MFLO Move from LO
MTLO Move to LO
Jump/Branch Instructions
J Jump
JAL Jump And Link
JR Jump Register
JALR Jump And Link Register
BEQ Branch on Equal
BNE Branch on Not Equal
BLEZ Branch on Less than or Equal to Zero
BGTZ Branch on Greater Than Zero
BLTZ Branch on Less Than Zero
BGEZ Branch on Greater than or Equal to Zero
BLTZAL Branch on Less Than Zero And Link
BGEZAL Branch on Greater than or Equal to Zero And Link
Coprocessor Instructions
MTCz Move to Coprocessor z
MFCz Move from Coprocessor z
CTCz Move Control Word to Coprocessor z
CFCz Move control Word from Coprocessor z
COPz Coprocessor Operation z
BCzT Branch on Coprocessor z True
BCzF Branch on Coprocessor z False
Special Instructions
SYSCALL System Call
BREAK Breakpoint

Architecture

15

Table 2-3. R3900 extended instructions

Instruction Description

Load/Store Instruction
SYNC Sync
Computational Instructions
MULT Multiply (3-operand instruction)
MULTU Multiply Unsigned (3-operand instruction)
MADD Multiply/ADD
MADDU Multiply/ADD Unsigned
Jump/Branch Instructions
BEQL Branch on Equal Likely
BNEL Branch on Not Equal Likely
BLEZL Branch on Less than or Equal to Zero Likely
BGTZL Branch on Greater Than Zero Likely
BLTZL Branch on Less Than Zero Likely
BGEZL Branch on Greater than or Equal to Zero Likely
BLTZALL Branch on Less Than Zero And Link Likely
BGEZALL Branch on Greater than or Equal to Zero And Link Likely
Coprocessor Instructions
BCzTL Branch on Coprocessor z True Likely
BCzFL Branch on Coprocessor z False Likely
Special Instruction
SDBBP Software Debug Breakpoint

Table 2-4. CP0 instructions

Instruction Description

CP0 Instructions
MTC0 Move to CP0
MFC0 Move from CP0
RFE Restore from Exception
DERET Debug Exception Return
CACHE Cache Operation

Table 2-5. R3000A instructions not supported by the R3900

Instruction Description Operation

Coprocessor Instructions
LWCz Load Word from Coprocessor Reserved Instruction Exception
SWCz Store Word to Coprocessor Reserved Instruction Exception
CP0 Instructions
TLBR Read indexed TLB entry no operation(nop)
TLBWJ Write indexed TLB entry no operation(nop)
TLBWR Write Random TLB entry no operation(nop)
TLBP Probe TLB for matching entry no operation(nop)

Architecture

16

2.4 Data Formats and Addressing

This section explains how data is organized in R3900 registers and memory.

The R3900 uses the following data formats: 64-bit doubleword, 32-bit word, 16-bit halfword and 8-bit byte.

The byte order can be set to either big endian or little endian.

Figure 2-5 shows how bytes are ordered in words, and how words are ordered in multiple words, for both the

big-endian and little-endian formats.

31

24

23 16 15 8 7

0

Word address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0

� Byte 0 is the most significant byte (bit 31-24).

� A word is addressed beginning with the most significant byte.

(a) Big endian

31

24

23

16

15

8

7

0

Word address

11 10 9 8 8

7 6 5 4 4

3 2 1 0 0

� Byte 0 is the least significant byte (bit 7-0).

� A word is addressed beginning with the least significant byte.

(b) Little endian

Higher address

Lower address

Higher address

Lower address

Figure 2-5. Big endian and little endian formats

Architecture

17

Architecture

18

In this document (bit 0 is always the rightmost bit).

Byte addressing is used with the R3900 Processor Core, but there are alignment restrictions for halfword and

word access. Halfword access is aligned on an even byte boundary (0, 2, 4...) and word access on a byte

boundary divisible by 4 (0, 4, 8...) .

The address of multiple-byte data, as shown in Figure 2-5 above, begins at the most significant byte for the

big endian format and at the least significant byte for the little endian format.

There are special instructions (LWL, LWR, SWL, SWR) for accessing words not aligned on a word

boundary. They are used in pairs for addressing misaligned words, but involve an extra instruction cycle

which is wasted if used with properly aligned words. Figure 2-6 shows the byte arrangement when a

misaligned word is addressed at byte address 3 for the big and little endian formats.

31 24 23 16 15 8 7 0

4 5 6

3

31 24 23 16 15 8 7 0

6 5 4

3

Figure 2-6. Byte addresses of a misaligned word

Higher address

Lower address

Higher address

Lower address

(a) Big endian

(b)Little endian

Architecture

19

2.5 Pipeline Processing Overview

The R3900 Processor Core executes instructions in five pipeline stages (F: instruction fetch; D: decode; E:

execute; M: memory access; W: register write-back). Each pipeline stage is executed in one clock cycle.

When the pipeline is fully utilized, five instructions are executed at the same time resulting in an instruction

execution rate of one instruction per cycle.

With the R3900 Processor Core an instruction that immediately follows a load instruction can use the result of

that load instruction. Execution of the following instruction is delayed by hardware interlock until the result of

the load instruction becomes available. The instruction position immediately following the load instruction is

called the “load delay slot.”

In the case of branch instructions, a one-cycle delay is required to generate the branch target address. This

delayed cycle is referred to as the “branch delay slot.” An instruction placed immediately after a branch

instruction (in the branch delay slot) can be executed prior to the branch while the branch target address is

being generated.

The R3900 Processor Core provides a Branch Likely instruction whereby an instruction to be executed at the

branch target can be placed in the delay slot of the Branch Likely instruction and executed only if the

conditions of the branch instruction are met. If the conditions are not met, and the branch is not taken, the

instruction in the delay slot is treated as a NOP. This makes it possible to place an instruction that would

normally be executed at the branch target into the delay slot for quick execution (if the conditions of the

branch are met).

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Current CPU

cycle

Figure 2-7. Pipeline stages for execution of R3900 Processor Core instructions

Architecture

20

2.6 Memory Management Unit (MMU)

2.6.1 R3900 Processor Core operating modes

The R3900 Processor Core has two operating modes, user mode and kernel mode. Normally the

processor operates in user mode. It switches to kernel mode if an exception is detected. Once in

kernel mode, it remains there until an RFE (Restore From Exception) instruction is executed.

(1) User mode

User mode makes available one of the two 2 Gbyte virtual address spaces (kuseg). In this

mode the most significant bit of each kuseg address in the memory map is 0. Attempting to

access an address whose MSB is 1 while in user mode returns an Address Error exception.

(2) Kernel mode

Kernel mode makes available a second 2 Gbyte virtual address space (kseg), in addition to the

kuseg accessible in user mode. The MSB of each kseg address in the memory map is 1.

Architecture

21

2.6.2 Direct segment mapping

The R3900 Processor Core includes a direct segment mapping MMU. The following virtual address

spaces are available depending on the processor mode (Figure 2-8 shows the address mapping).

(1) User mode

One 2 Gbyte virtual address space (kuseg) is available. Virtual addresses from 0x0000 0000

to 0x7FFF FFFF are translated to physical addresses 0x4000 0000 to 0xBFFF FFFF,

respectively.

(2) Kernel mode

The kernel mode address space is treated as four virtual address segments. One of these is

the same as the kuseg space in user mode; the remaining three are the kernel segments kseg0,

kseg1 and kseg2.

(a) kuseg

This is the same as the virtual address space available in user mode. Address

translation is also the same as in user mode. The upper 16 Mbytes of kuseg is

reserved for on-chip resources and is not cacheable.

(b) kseg0

This is a 512 Mbyte segment spanning virtual addresses 0x8000 0000 to 0x9FFF

FFFF. Fixed mapping of this segment is made to physical addresses 0x0000 0000 to

0x1FFF FFFF, respectively. This area is cacheable.

(c) kseg1

This is a 512 Mbyte segment from virtual address 0xA000 0000 to 0xBFFF FFFF.

Fixed mapping of this segment is made to physical address 0x0000 0000 to 0x1FFF

FFFF, respectively. Unlike kseg0, this area is not cacheable.

(d) kseg2

This is a 1 Gbyte linear address space from virtual addresses 0xC000 0000 to 0xFFFF

FFFF. The upper 16 Mbytes of kseg2 are reserved for on-chip resources and are not

cacheable. Of this reserved area, 0xFF20 0000 to 0xFF3F FFFF is a 2 Mbyte

reserved area intended for use as a debugging monitor area and for testing.

Architecture

22

0xFFFF FFFF
16MB Kernel Reserved

0xC000 0000

Kernel Cached

(kseg2)

0xA000 0000

Kernel Uncached

(kseg1)

0x8000 0000

Kernel Cached

(kseg0)

16MB User Reserved

0x0000 0000

Kernel/User Cached

(kuseg)

Kernel Cached Tasks 1024MB

Kernel/User

Cached Tasks
2048MB

Inaccessible 512MB

Kernel Boot and I/O

Cached/uncached
512MB

Physical address spaceVirtual address space

Figure 2-8. Address mapping

Architecture

22

3.

Architecture

23

Chapter 3 Instruction Set Overview

This chapter summarizes each of the R3900 Processor Core instruction types in table format and explains each

instruction briefly. Details of individual instructions are given in Appendix A.

3.1 Instruction Formats

Each of the R3900 Processor Core instructions is aligned on a word boundary and has a 32-bit (single-word)

length. There are only three instruction formats, as shown in Figure 3-1. As a result, instruction decoding

is simplified. Less frequently used and more complex functions or addressing modes can be realized by

combining these instructions.

31 26 25 21 20 16 15 0

op rs rt immediate

31 26 25 0

op target

31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd sa funct

op Operation code (6 bits)
rs Source register (5 bits)
rt Target (source or destination) register, or branch condition (5 bits)
rd Destination register (5 bits)
immediate Immediate, branch displacement, address displacement (16 bits)
target Branch target address (26 bits)
sa Shift amount (5 bits)
funct Function (6 bits)

Figure 3-1. Instruction Formats and subfield mnemonics

3.2 Instruction Notation

All variable subfields in the instruction formats used here are written in lower-case letters (rs, rt, immediate,

etc.). Also, an alias is sometimes used for a subfield name, for the sake of clarity. For example, rs in a

load/store instruction may be referred to as “base”. When such an alias refers to a subfield that can take a

variable value, it is likewise written in lower-case letters.

With specific instructions, the instruction subfields “op” and “funct” have fixed 6-bit values. These values

are thus written as equates in upper-case letters. In the Load Byte instruction, for example, op = LB; and in

the ADD instruction, op = SPECIAL and function = ADD.

I-type (Immediate)

J-type (Jump)

R-type (Register)

Architecture

24

3.3 Load and Store Instructions

Load and Store instructions move data between memory and general registers and are all I-type instructions.

The only directly supported addressing mode is base register plus 16-bit signed immediate offset.

With the R3900 Processor Core, the result of a load instruction can be used by the immediately following

instruction. Execution of the following instruction is delayed by hardware interlock until the load result

becomes available. The instruction position immediately following the load instruction is referred to as the

load delay slot . In the case of the LWL (Load Word Left) and LWR (Load Word Right) instructions,

however, it is possible to use the destination register of an immediately preceding load instruction as the

target register of the LWL or LWR instruction.

The access type, which indicates the size of data to be loaded or stored, is determined by the operation code

(op) of the load or store instruction. The target address of a load or store is always the smallest byte address

of the target data byte string, regardless of the access type or endian. This address is the most significant byte

for the big endian format, and the least significant byte for the little endian format.

The position of the accessed data is determined by the access type and the two low-order address bits, as

shown in Table 3-1.

Designating a combination other than those shown in table 3-1 results in an Address Error exception.

Low order Accessed Bytes

Access Type address bits Big Endian Little Endian

1 0 31 0 31 0

word 0 0

triple-byte 0

0

0

1

halfword 0

1

0

0

byte

0

0

1

1

0

1

0

1

Table 3-1. Byte specifications for load and store instructions

3210

210

321

10

32

0

1

2

3

0123

012

123

01

23

0

1

2

3

Architecture

25

Table 3-2. Load/store instructions (1/2)

Instruction Format and Description

Load Byte LB rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Sign-extend the contents of the addressed byte and
load into register rt.

Load Byte
Unsigned

LBU rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Zero-extend the contents of the addressed byte
and load into register rt.

Load
Halfword

LH rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Sign-extend the contents of the addressed
halfword and load into register rt.

Load
Halfword
Unsigned

LHU rt, offset (base)
 Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Zero-extend the contents of the addressed
halfword and load into register rt.

Load Word LW rt, offset (base)
 Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Load the contents of the addressed word into
register rt.

Load Word
Left

LWL rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. This instruction is paired with LWR and used to
load word data not aligned with a word boundary. The LWL instruction loads
the left part of the word, and LWR loads the right part. LWL shifts the
addressed byte to the left, so that it will form the left side of the word, merges
it with the contents of register rt and loads the result into rt.

Load Word
Right

LWR rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. LWR shifts the addressed byte to the right, so that
it will form the right side of the word, merges it with the contents of register rt
and loads the result into rt.

Store Byte SB rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Store the contents of the least significant byte of
register rt at the addressed byte.

Store
Halfword

SH rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Store the contents of the least significant halfword
of register rt at the addressed byte.

offsetrtbaseop

Architecture

26

Table 3-2. Load/store instructions (2/2)

Instruction Format and Description

Store Word SW rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. Store the contents of the least significant word of
register rt at the addressed byte.

Store Word
Left

SWL rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. This instruction is used together with SWR to
store the contents of a register into four consecutive bytes of memory when
the bytes cross a word boundary. The SWL instruction stores the left part of
the register, and SWR stores the right part. SWL shifts the contents of
register rt to the right so that the leftmost byte of the word aligns with the
addressed byte. It then stores the bytes containing the original data in the
corresponding bytes at the addressed byte.

Store Word
Right

SWR rt, offset (base)
Generate the address by sign-extending a 32-bit offset and adding it to the
contents of register base. SWR shifts the contents of register rt to the left so
that the rightmost byte of the word aligns with the addressed byte. It then
stores the bytes containing the original data in the corresponding bytes at the
addressed byte.

Table 3-3. Load/store instructions (R3000A extended set)

Instruction Format and Description

SYNC SYNC Interlock the pipeline while a load or store instruction is executing, until
execution is completed.

offset

funct

rtbase

0

op

op

Architecture

27

3.4 Computational Instructions

Computational instructions perform arithmetic, logical or shift operations on values in registers. The

instruction format can be R-type or I-type. With R-type instructions, the two operands and the result are

register values. With I-type instructions, one of the operands is 16-bit immediate data. Computational

instructions can be classified as follows.

• ALU immediate (Table 3-4)

• Three-operand register-type (Table 3-5)

• Shift (Table 3-6)

• Multiply/Divide (Table 3-7,Table3-8)

Table 3-4. ALU immediate instructions

Instruction Format and Description

Add
Immediate

ADDI rt, rs, immediate
Add 32-bit sign-extended immediate to the contents of register rs, and store the
result in register rt. An exception is raised in the event of a two’s-complement
overflow.

Add
Immediate
Unsigned

ADDIU rt, rs, immediate
Add 32-bit sign-extended immediate to the contents of register rs, and store the
result in register rt. No exception is raised on a two’s-complement overflow.

Set on Less
Than
Immediate

SLTI rt, rs, immediate
Compare 32-bit sign-extended immediate with the contents of register rs as
signed 32-bit data. If rs is less than immediate, set 1 in rt as the result;
otherwise store 0 in rt.

Set on Less
Than
Unsigned
Immediate

SLTUI rt, rs, immediate
Compare 32-bit sign-extended immediate with the contents of register rs as
unsigned 32-bit data. If rs is less than immediate, set 1 in rt as the result;
otherwise store 0 in rt.

AND
Immediate

ANDI rt, rs, immediate
AND 32-bit zero-extended immediate with the contents of register rs, and store
the result in register rt.

OR
Immediate

ORI rt, rs, immediate
OR 32-bit zero-extended immediate with the contents of register rs, and store
the result in register rt.

Exclusive
OR
Immediate

XORI rt, rs, immediate
Exclusive-OR 32-bit zero-extended immediate with the contents of register rs,
and store the result in register rt.

Load Upper
Immediate

LUI rt, immediate
Shift 16-bit immediate left 16 bits, zero-fill the least significant 16 bits of the
word, and store the result in register rt.

immediatertrsop

Architecture

28

Table 3-5. Three-operand register-type instructions

Instruction Format and Description

Add ADD rd, rs, rt
Add the contents of registers rs and rt, and store the result in register rd. An
exception is raised in the event of a two’s-complement overflow.

Add Unsigned ADDU rd, rs, rt
Add the contents of registers rs and rt, and store the result in register rd. No
exception is raised on a two’s-complement overflow.

Subtract SUB rd, rs, rt
Subtract the contents of register rt from rs, and store the result in register rd.
An exception is raised in the event of a two’s-complement overflow.

Subtract
Unsigned

SUBU rd, rs, rt
Subtract the contents of register rt from rs, and store the result in register rd.
No exception is raised on a two’s-complement overflow.

Set on Less
Than

SLT rd, rs, rt
Compare the contents of registers rt and rs as 32-bit signed integers. If rs is
less than rt, store 1 in rd as the result; otherwise store 0 in rd.

Set on Less
Than Unsigned

SLTU rd, rs, rt
Compare the contents of registers rt and rs as 32-bit unsigned integers. If rs is
less than rt, store 1 in rd as the result; otherwise store 0 in rd.

AND AND rd, rs, rt
Bitwise AND the contents of registers rs and rt, and store the result in register
rd.

OR OR rd, rs, rt
Bitwise OR the contents of registers rs and rt, and store the result in register rd.

Exclusive OR XOR rd, rs, rt
Bitwise Exclusive-OR the contents of registers rs and rt, and store the result in
register rd.

NOR NOR rd, rs, rt
Bitwise NOR the contents of registers rs and rt, and store the result in register
rd.

rtrs funct0op rd

Architecture

29

Table 3-6. Shift instructions

(a) SLL, SRL, SRA

Instruction Format and Description

Shift Left
Logical

SLL rd, rt, sa
Left-shift the contents of register rt by the number of bits indicated in sa (shift
amount), and zero-fill the low-order bits. Store the resulting 32 bits in register
rd.

Shift Right
Logical

SRL rd, rt, sa
Right-shift the contents of register rt by sa bits, and zero-fill the high-order bits.
Store the resulting 32 bits in register rd.

Shift Right
Arithmetic

SRA rd, rt, sa
Right-shift the contents of register rt by sa bits, and sign-extend the high-order
bits. Store the resulting 32 bits in register rd.

(b) SLLV, SRLV, SRAV

Instruction Format and Description

Shift Left
Logical
Variable

SLLV rd, rt, sa
Left-shift the contents of register rt. The number of bits shifted is indicated in
the 5 low-order bits of the register rs contents. Zero-fill the low-order bits of rt
and store the resulting 32 bits in register rd.

Shift Right
Logical
Variable

SRLV rd, rt, sa
Right-shift the contents of register rt. The number of bits shifted is indicated in
the 5 low-order bits of the register rs contents. Zero-fill the high-order bits of rt
and store the resulting 32 bits in register rd.

Shift Right
Arithmetic
Variable

SRAV rd, rt, sa
Right-shift the contents of register rt. The number of bits shifted is indicated in
the 5 low-order bits of the register rs contents. Sign-extend the high-order bits
of rt and store the resulting 32 bits in register rd.

rt

rt

0

rs

funct

funct

sa

0

op

op

rd

rd

Architecture

30

Table 3-7. Multiply/Divide Instructions

(a) MULT, MULTU, DIV, DIVU

Instruction Format and Description

Multiply MULT rs, rt
Multiply the contents of registers rs and rt as two's complement integers, and
store the doubleword (64-bit) result in multiply/divide registers HI and LO.

Multiply
Unsigned

MULTU rs, rt
Multiply the contents of registers rs and rt as unsigned integers, and store the
doubleword (64-bit) result in multiply/divide registers HI and LO.

Divide DIV rs, rt
Divide register rs by register rt as two's complement integers. Store the 32-bit
quotient in LO, and the 32-bit remainder in HI.

Divide
Unsigned

DIVU rs, rt
Divide register rs by register rt as unsigned integers. Store the 32-bit quotient
in LO, and the 32-bit remainder in HI.

(b) MFHI, MFLO

Instruction Format and Description

Move From HI MFHI rd
Store the contents of multiply/divide register HI in register rd.

Move From
LO

MFLO rd
Store the contents of multiply/divide register LO in register rd.

(c) MTHI, MTLO

Instruction Format and Description

Move To HI MTHI rs
Store the contents of register rs in multiply/divide register HI.

Move To LO MTLO rs
Store the contents of register rs in multiply/divide register LO.

rt

rd

rs

0

rs

funct

funct

funct

0

0

0

op

op

op

Architecture

31

Table 3-8. Multiply, multiply / add instructions (R3000A extended instruction set)

MULT, MULTU, MADD, MADDU (ISA extended set)

Instruction Format and Description

Multiply MULT rd, rs, rt
Multiply the contents of registers rs and rt as two’s complement integers, and
store the doubleword (64-bit) result in multiply/divide registers HI and LO.
Also, store the lower 32 bits in register rd.

Multiply
Unsigned

MULTU rd, rs, rt
Multiply the contents of registers rs and rt as unsigned integers, and store the
doubleword (64-bit) result in multiply/divide registers HI and LO. Also, store
the lower 32 bits in register rd.

Multiply ADD MADD rd, rs, rt
MADD rs, rt
Multiply the contents of registers rs and rt as two’s complement integers, and
add the doubleword (64-bit) result to multiply/divide registers HI and LO.
Also, store the lower 32 bits of the add result in register rd. In the MADD rs, rt
format, the store operation to a general register is omitted.

Multiply ADD
Unsigned

MADDU rd, rs, rt
MADDU rs, rt
Multiply the contents of registers rs and rt as unsigned integers, and add the
doubleword (64-bit) result to multiply/divide registers HI and LO. Also, store the
lower 32 bits of the add result in register rd. In the MADDU rs, rt format, the
store operation to a general register is omitted.

rtrs funct0op rd

Architecture

32

3.5 Jump/Branch Instructions

Jump/branch instructions change the program flow. A jump/branch instruction will delay the pipeline by one

instruction cycle, however, an instruction inserted into the delay slot (immediately following a branch

instruction) can be executed while the instruction at the branch target address is being fetched.

Jump and Jump And Link instructions, typically used to call subroutines, have the J-type instruction format.

The jump target address is generated as follows. The 26-bit target address (target) of the instruction is left-

shifted two bits and combined with the high-order four bits of the current PC (program counter) value to form

a 32-bit absolute address. This becomes the branch target address of the jump instruction. The PC shows

the address of the branch delay slot at that time.

The Jump And Link instruction puts the return address in register r31.

The R-type instruction format is used for returns from subroutines and long-distance jumps beyond one page

(Jump Register and Jump And Link Register instructions). The register value in this format is a 32-bit byte

address.

Branch instructions use the I-type format. Branching is to an relative address determined by adding a 16-bit

signed offset to the program counter.

Table 3-9. Jump instructions

(a) J, JAL

Instruction Format and Description

Jump J target
Left-shift the 26-bit target by two bits and, after a one-instruction delay, jump to
an address formed by combining this result with the high-order 4 bits of the
program counter (PC).

Jump And
Link

JAL target
Left-shift the 26-bit target by two bits and, after a one-instruction delay, jump to
an address formed by combining the result with the high-order 4 bits of the
program counter (PC). Store in r31 (link register) the address of the
instruction following the instruction in the delay slot (The instruction in the delay
slot is executed during the jump).

(b) JR

Instruction Format and Description

Jump
Register

JR rs
Jump to the address in register rs after a one-instruction delay.

(c) JALR

Instruction Format and Description

Jump And
Link
Register

JALR rs, rd
Jump to the address in register rs after a one-instruction delay. Store in rd the
address of the instruction following the instruction in the delay slot (the

0

op

rs

rd

funct

funct

target

0

0

op

op rd

Architecture

33

instruction in the delay slot is executed during the jump).
The following notes apply to Table 3-10.

• The target address of a branch instruction is generated by adding the address of the instruction in the delay

slot (the instruction to be executed during the branch) to the 16-bit offset (that has been left-shifted two bits

and sign-extended to 32 bits). Branch instructions are executed with a one-cycle delay.

• In the case of the Branch Likely instructions in Table 3-10, if the branch condition is not met and the branch

is not taken, the instruction in the delay slot is treated as a NOP.

Table 3-10. Branch instructions

(a) BEQ, BNE

Instruction Format and Description

Branch on
Equal

BEQ rs, rt, offset
Branch to the target if the contents of registers rs and rt are equal.

Branch on Not
Equal

BNE rs, rt, offset
Branch to the target if the contents of registers rs and rt are not equal.

(b) BLEZ, BGTZ

Instruction Format and Description

Branch on
Less Than or
Equal Zero

BLEZ rs, offset
Branch to the target if register rs is 0 or less.

Branch on
Greater Than
Zero

BGTZ rs, offset
Branch to the target if register rs is greater than 0.

(c) BLTZ, BGEZ, BLTZAL, BGEZAL

Instruction Format and Description

Branch on
Less Than
Zero

BLTZ rs, offset
Branch to the target if register rs is less than zero

Branch on
Greater Than
or Equal Zero

BGEZ rs, offset
Branch to the target if register rs is 0 or greater.

Branch on
Less Than
Zero And Link

BLTZAL rs, offset
Store in r31 (link register) the address of the instruction following the instruction
in the delay slot (the one to be executed during the branch). If register rs is less
than 0, branch to the target.

Branch on
Greater Than
or Equal Zero
And Link

BGEZAL rs, offset
Store in r31 (link register) the address of the instruction following the instruction
in the delay slot (the instruction in the delay slot is executed during the branch).
If register rs is 0 or greater, branch to the target.

rs

rs

rs

offset

offset

offset

rt

0

funct

op

op

op

Architecture

34

(d) BEQL, BNEL, BLEZL, BGTZL, BLTZL, BGEZL, BLTZALL, BGEZALL (ISA Extended Set)

Instruction Format and Description

Branch on
Equal Likely

BEQL rs, rt, offset
Branch to the target if the contents of registers rs and rt are equal.

Branch on Not
Equal Likely

BNEL rs, rt, offset
Branch to the target if the contents of registers rs and rt are not equal.

Branch on
Less Than or
Equal Zero
Likely

BLEZL rs, offset
Branch to the target if register rs is 0 or less.

Branch on
Greater Than
Zero Likely

BGTZL rs, offset
Branch to the target if register rs is greater than 0.

Instruction Format and Description

Branch on
Less Than
Zero Likely

BLTZL rs, offset
Branch to the target if register rs is less than zero

Branch on
Greater Than
or Equal Zero
Likely

BGEZL rs, offset
Branch to the target if register rs is 0 or greater.

Branch on
Less Than
Zero And Link
Likely

BLTZALL rs, offset
Store in r31 (link register) the address of the instruction following the instruction
in the delay slot (the one to be executed during the branch). If register rs is less
than 0, branch to the target.

Branch on
Greater Than
or Equal Zero
And Link
Likely

BGEZALL rs, offset
Store in r31 (link register) the address of the instruction following the instruction
in the delay slot (the instruction in the delay slot is executed during the branch).
If register rs is 0 or greater, branch to the target.

rs

rs

offset

offset

rt

funct

op

op

Architecture

35

3.6 Special Instructions

There are three special instructions used for software traps. The instruction format is R-type for all three.

Table 3-11. Special instructions

(a) SYSCALL

Instruction Format and Description

System Call SYSCALL code
Raise a system call exception, passing control to an exception handler.

(b) BREAK

Instruction Format and Description

Breakpoint BREAK code
Raise a breakpoint exception, passing control to an exception handler.

(c) SDBBP

Instruction Format and Description

Software
Debug
Breakpoint

SDBBP code
Raise a debug exception, passing control to an exception processor.

funct

funct

funct

code

code

code

op

op

op

Architecture

36

3.7 Coprocessor Instructions

Coprocessor instructions invoke coprocessor operations. The format of these instructions depends on which

coprocessor is used.

Table 3-12. Coprocessor instructions

(a) MTCz, MFCz, CTCz, CFCz

Instruction Format and Description

Move To
Coprocessor

MTCz rt, rd
Move the contents of CPU general register rt to coprocessor z’s coprocessor
register rd.

Move From
Coprocessor

MFCz rt, rd
Move the contents of coprocessor z’s coprocessor register rd to CPU general
register rt.

Move Control
To
Coprocessor

CTCz rt, rd
Move the contents of CPU general register rt to coprocessor z’s coprocessor
control register rd.

Move Control
From
Coprocessor

CFCz rt, rd
Move the contents of coprocessor z’s coprocessor control register rd to CPU
general register rt.

(b) COPz

Instruction Format and Description

Coprocessor
Operation

COPz cofun
Execute in coprocessor z the processing indicated in cofun. The CPU state is
not changed by the processing executed in the coprocessor.

(c) BCzT, BCzF

Instruction Format and Description

Branch on
Coprocessor
z True

BCzT offset
Generate the branch target address by adding the address of the instruction in
the delay slot (the instruction to be executed during the branch) and the 16-bit
offset (after left-shifting two bits and sign-extending to 32 bits). If the
coprocessor z condition line is true, branch to the target address after a one-
cycle delay.

Branch on
Coprocessor
z False

BCzF offset
Generate the branch target address by adding the address of the instruction in
the delay slot (the instruction to be executed during the branch) and the 16-bit
offset (after left-shifting two bits and sign-extending to 32 bits). If the
coprocessor z condition line is false, branch to the target address after a one-
cycle delay.

rtfunct 0

cofun

offset

rd

co

funct

op

op

op

Architecture

37

(d) BCzTL, BCzFL (ISA Extended Set)

Instruction Format and Description

Branch on
Coprocessor
z True Likely

BCzTL offset
Generate the branch target address by adding the address of the instruction in
the delay slot (the instruction to be executed during the branch) and the 16-bit
offset (after left-shifting two bits and sign-extending to 32 bits). If the
coprocessor z condition line is true, branch to the target address after a one-
cycle delay. If the condition line is false, nullify the instruction in the delay slot.

Branch on
Coprocessor
z False Likely

BCzFL offset
Generate the branch target address by adding the address of the instruction in
the delay slot (the instruction to be executed during the branch) and the 16-bit
offset (after left-shifting two bits and sign-extending to 32 bits). If the
coprocessor z condition line is false, branch to the target address after a one-
cycle delay. If the condition line is true, nullify the instruction in the delay slot.

offsetfunctop

Architecture

38

3.8 System Control Coprocessor (CP0) Instructions

Coprocessor 0 instructions are used for operations involving the system control coprocessor (CP0)registers,

processor memory management and exception handling.

Note :Attempting to execute a CP0 instruction in user mode when the CU0 bit in the status register is not set

will return a Coprocessor Unusable exception.

Table 3-13. System control coprocessor (CP0) instructions

(a) MTC0, MFC0

Instruction Format and Description

Move To CP0 MTC0 rt, rd
Move the contents of CPU general register rt to CP0 coprocessor register rd.

Move From
CP0

MFC0 rt, rd
Move the contents of CP0 coprocessor register rd to CPU general register rt.

(b) RFE, DERET

Instruction Format and Description

Restore From
Exception

RFE
Restore the previous mode bit of the Status register and Cache register into the
corresponding current mode bit, and restore the old status bit into the
corresponding previous mode bit.

Debug
Exception
Return

DERET
Branch to the value in the CP0 DEPC register.

(c) CACHE

Instruction Format and Description

Cache
Operation

CACHE op, offset (base)
Add the contents of the CPU general registers designated by base and offset to
generate a virtual address. The MMU translates this virtual address to a
physical address. The cache operation to be performed at this address is
contained in op.

rt

op

funct

co

base

0

funct

offset

rd

0

op

op

op

Architecture

39

Chapter 4 Pipeline Architecture

4.1 Overview

The R3900 Processor Core executes instructions in five pipeline stages (F: instruction fetch; D: decode; E:

execute; M: memory access; W: register write-back). The five stages have the following roles.

F : An instruction is fetched from the instruction cache.

D : The instruction is decoded. Contents of the general-purpose registers are read. If the instruction

involves a branch or jump, the target address is generated. The coprocessor condition signal is latched.

E : Arithmetic, logical and shift operations are performed. The execution of multiple/divide instructions is

begun.

M : The data cache is accessed in the case of load and store instructions.

W : The result is written to a general register.

Each pipeline stage is executed in one clock cycle. When the pipeline is fully utilized, five instructions are

executed at the same time, resulting in an average instruction execution rate of one instruction per cycle as

illustrated in Figure 4-1.

F D E M W

F D E M W

F D E M W

F D E M W

F D E M W

Current CPU
cycle

Figure 4-1. Pipeline stages for executing R3900 Processor Core instructions

Architecture

40

4.2 Delay Slot

Some R3900 Processor Core instructions are executed with a delay of one instruction cycle. The cycle in
which an instruction is delayed is called a delay slot. A delay occurs with load instructions and branch/jump
instructions.

4.2.1 Delayed load

With load instructions, a one-cycle delay occurs while waiting for the data being loaded to become
available for use by another instruction. The R3900 Processor Core checks the instruction in the
delay slot (the instruction immediately following the load instruction) to see if that instruction needs
to use the load result; if so, it stalls the pipeline (see Figure 4-2).

With the R3000A, if the instruction following a load instruction required access to the loaded data,
then a NOP had to be inserted immediately after the load instruction. The delay load feature in the
R3900 Processor Core eliminates the need for a NOP instruction, resulting in smaller code size than
with the R3000A.

LW r2, 20(r0) F D E M W

ADD r3, r1, r2 F D ES E M W
 ↑ Pipeline stall

4.2.2 Delayed branching

Figure 4-3 shows the pipeline flow for jump/branch instructions. The branch target address that must
be generated for these type of instructions does not become available until the E stage � too late to be
used by the instruction in the branch delay slot. The branch target instruction is fetched immediately
after the branch delay slot cycle.

It is, however, possible to fetch a different instruction that would normally be executed prior to the
branch instruction.

Branch/Jump F D E M W
instruction

Target address

Branch delay slot F D E M W

Branch target address F D E M W

You can make effective use of the branch delay slot as follows.

• Since the instruction immediately following a branch instruction will be executed just priot to the
branch, you can therefore place an instruction (that logically should be executed just before the
branch) into the delay slot following the branch instruction.

Figure 4-2. Load delay slot and pipeline stall

Figure 4-3. Branch instruction delay slot

Architecture

41

• The R3900 Processor Core provides Branch Likely instructions in addition to the normal Branch
instructions that allow the instruction at the target branch address to be placed in the delay slot. If
the branch condition of the Branch Likely instruction is met, the instruction in the delay slot is
executed and the branch is taken. If the branch is not taken, the instruction in the delay slot is
treated as a NOP. With the R3000A, which dose not support the Branch Likely instruction, the
only instructions that can be placed in the delay slot are those unaffected if the branch is not taken.

• If no instruction is placed in the delay slot, a NOP is placed just after the branch instruction.

4.3 Nonblocking Load Function

The nonblocking load function prevents the pipeline from stalling when a cache miss occurs and a refill cycle
is required to refill the data cache. Instructions after the load instruction that do not use registers affected by
the load will continue to be executed. An example is shown in Figure 4-4. Here a cache miss occurs with
the first load instruction. The two instructions following are executed prior to the load. The fourth
instruction (ADD), must use a register that will be loaded by the load instruction, therefore the pipeline is
stalled until the cache data becomes valid.

LW r3, 0(r0) F D E M R R R R W

ADD r6, r4, r2 F D E M W r3

ADD r7, r5, r2 F D E M W

ADD r8, r9, r3 F D ES ES ES E M W

R : Refill cycle, ES : Stall in E stage

4.4 Multiply and Multiply/Add Instructions(MULT, MULTU, MADD, MADDU)

The R3900 Processor Core can execute multiply and multiply/add instructions continuously, and can use the
results in the HI/LO registers in immediately following instructions, without pipeline stall (Figure 4-5(a)). The
R3900 requires only one clock cycle to use the results of a general-purpose register (Figure 4-5(b)).

MADD r9, r5, r1 F D E(M1) M(M2) W

MADD r9, r6, r2 F D E(M1) M(M2) W

MADD r9, r7, r3 F D E(M1) M(M2) W

MADD r9, r8, r4 F D E(M1) M(M2) W

MFHI r10 F D E M W

M1 : First multiply stage ; M2 : Second multiply stage

(a) Continued execution of MADD

MULT r3, r2, r1 F D E(M1) M(M2) W

ADD r5, r4, r3 F D ES E M W

(b) When there is data dependency in a general-purpose register

Figure 4-4. Nonblocking load function

Figure 4-5. Pipeline operation with multiply instructions

Architecture

42

4.5 Divide Instruction (DIV, DIVU)

The R3900 Processor Core performs division instructions in the division unit independently of the pipeline.

Division starts from the pipeline E stage and takes 35 cycles. Figure 4-6 shows an example of a divide

instruction.

Division in the division

unit

E1 E2 E3 E34 E35

div r5,r1 F D E M W

mflo r4 F D ES ES ES ES E M W

Note :

When an MTHI, MTLO, DIV or DIVU instruction comes up for execution when a DIV or DIVU

instruction is already being executed in progress, the R3900 will stop the DIV or DIVU in progress

and will begin executing the MTHI, MTLO or new DIV or DIVU instruction.

The R3900 Processor Core will not halt execution of a DIV or DIVU instruction when an exception

occurs during its execution.

Division stops in Halt and Doze mode. It restarts when the R3900 returns from Halt or Doze mode.

4.6 Streaming

During a cache refill operation, the R3900 Processor Core can resume execution immediately after arrival of

necessary data or instruction in cache even though cache refill operation is not completed. This is referred to

as “streaming.”

5.

Figure 4-6. Example of DIV instruction

Architecture

43

Chapter 5 Memory Management Unit (MMU)

The R3900 Processor Core doesn't have TLB.

5.1 R3900 Processor Core Operating Modes

The R3900 Processor Core has two operating modes, user mode and kernel mode. Normally it operates in

user mode, but when an exception is detected it goes to kernel mode. Once in kernel mode, it remains until

an RFE (Restore From Exception) instruction is executed. The available virtual address space differs with

the mode, as shown in Figure 5-1.

(1) User mode

User mode makes available only one of the two 2 Gbyte virtual address spaces (kuseg). The most

significant bit of each kuseg address is 0. The virtual address range of kuseg is 0x0000 0000 to

0x7FFF FFFF. Attempting to access an address when the MSB is 1 while in user mode returns an

Address Error exception.

(2) Kernel mode

Kernel mode makes available a second 2 Gbyte virtual address space (kseg), in addition to the kuseg

accessible in user mode. The virtual address range of kseg is 0x8000 0000 to 0xFFFF FFFF.

User mode
0x7FFF FFFF

0x0000 0000

2GB

Kuseg

Kernel mode
0xFFFF FFFF

0x8000 0000

2GB

kseg

0x7FFF FFFF

0x0000 0000

2GB

Kuseg

Figure 5-1. Operating modes and virtual address spaces

Architecture

44

5.2 Direct Segment Mapping

The R3900 Processor Core has a direct segment mapping MMU.

Figure 5-2 shows the virtual address space of the internal MMU.

(1) User mode

One 2 Gbyte virtual address space (kuseg) is available in user mode. In this mode, the most

significant bit of each kuseg address is 0. The virtual address range of kuseg is 0x0000 0000 to

0x7FFF FFFF. Attempting to access an address outside of this range, that is, with the MSB is 1,

while in user mode will raise an Address Error exception. Virtual addresses 0x0000 0000 to 0x7FFF

FFFF are translated to physical addresses 0x4000 0000 to 0xBFFF FFFF, respectively.

The upper 16-Mbyte area of kuseg (0x7F00 0000 to 0x7FFF FFFF) is reserved for on-chip resources

and is not cacheable.

(2) Kernel mode

The kernel mode address space is treated as four virtual address segments. One of these, kuseg, is

the same as the kuseg space in user mode; the remaining three are kernel segments kseg0, kseg1 and

kseg2.

Figure 5-2. Internal MMU virtual address space

1GB
kseg2

0.5GB
kseg1

0.5GB
kseg0

2GB
kuseg

2GB
kuseg

0xFFFF FFFF

0xC000 0000

0xA000 0000

0x8000 0000
0x7FFF FFFF

0x0000 0000

0x7FFF FFFF

0x0000 0000

Kernel mode

User mode

Architecture

45

(a) kuseg

This is the same virtual address space available in user mode. Virtual addresses 0x0000

0000 to 0x7FFF FFFF are translated to physical addresses 0x4000 0000 to 0xBFFF FFFF,

respectivery.

The upper 16-Mbyte area of kuseg (0x7F00 0000 to 0x7FFF FFFF) is reserved for on-chip

resources and is not cacheable.

(b) kseg0

This is a 512 Mbyte segment spanning virtual addresses 0x8000 0000 to 0x9FFF FFFF.

Fixed mapping of this segment is made to the 512 Mbyte physical address space from 0x0000

0000 to 1FFF FFFF. This area is cacheable.

(c) kseg1

This is a 512 Mbyte segment from virtual addresses 0xA000 0000 to 0xBFFF FFFF. Fixed

mapping of this segment is made to the 512 Mbyte physical address space from 0x0000 0000

to 0x1FFF FFFF. Unlike kseg0, this area is not cacheable.

(d) kseg2

This is a 1 Gbyte linear address space from virtual address 0xC000 0000 to 0xFFFF FFFF.

The upper 16-Mbyte area of kseg2 (0xFF00 0000 to 0xFFFF FFFF) is reserved for on-chip

resources and is not cacheable. Of this reserved area, the 2 Mbytes from 0xFF20 0000 to

0xFF3F FFFF is intended for use as a debugging monitor area and testing.

Address mapping of the MMU is shown in Figure 5-3. The attributes of each segment are

shown in Table 5-1.

Architecture

46

Table 5-1. Address segment attributes

Segment Virtual address Physical address Cacheable Mode
kseg2
(reserved) 0xFF00 0000-0xFFFF FFFF 0xFF00 0000-0xFFFF FFFF Uncacheable kernel

kseg2 0xC000 0000-0xFEFF FFFF 0xC000 0000-0xFEFF FFFF Cacheable kernel

kseg1 0xA000 0000-0xBFFF FFFF 0x0000 0000-0x1FFF FFFF Uncacheable kernel

kseg0 0x8000 0000-0x9FFF FFFF 0x0000 0000-0x1FFF FFFF Cacheable kernel
kuseg
(reserved) 0x7F00 0000-0x7FFF FFFF 0xBF00 0000-0xBFFF FFFF Uncacheable kernel/user

kuseg 0x0000 0000-0x7EFF FFFF 0x4000 0000-0xBEFF FFFF Cacheable kernel/user

The upper 16 Mbytes of kuseg and kseg2 are reserved for on-chip resources (these areas are not cacheable.)

Of the reserved area in kseg2, the area from 0xFF20 0000 to 0xFF3F FFFF is a 2 Mbyte area reserved by

Toshiba (intended for debug monitor and testing, etc.)

6.

Figure 5-3. Internal MMU address mapping

Kernel Cached
(kseg2)

Kernel Uncached
(kseg1)

Kernel Cached
(kseg0)

Kernel/User Cached
(kuseg)

Kernel/User
Cached Tasks

Inaccessible

Kernel Boot and I/O
Cached/Uncached

Kernel Cached
Tasks

0xFFFF FFFF

0xC000 0000

0xA000 0000

0x8000 0000

0x0000 0000

1024MB

2048MB

512MB

512MB

Virtual address space Physical address space

16MB User Reserved

16MB Kernel Reserved

Architecture

47

Chapter 6 Exception Processing

This chapter explains how exceptions are handled by the R3900 Processor Core, and describes the registers of

the system control coprocessor CP0 used during exception handling.

6.1 Overview

When the R3900 Processor Core detects an exception, it suspends normal instruction execution. The

processor goes from user mode to kernel mode so it can perform processing to handle the abnormal condition

or asynchronous event.

The exception processing system in the R3900 Processor Core is designed for efficient handling of exceptions

such as arithmetic overflows, I/O interrupts and system calls. When an exception is detected, all normal

instruction execution is suspended . That is, execution of the instruction that caused the exception , as well

as execution processing of instructions already in the pipeline is halted. Processing jumps directly to the

exception handler designated for the raised exception.

When an exception is raised, the address at which execution should resume is loaded into the EPC (Exception

Program Counter) register indicating where processing should resume after the exception has been handled.

This will be the address of the instruction that caused the exception; or, if the instruction was supposed to be

executed during a branch (delay slot instruction), the resume address will be that of the immediately preceding

branch instruction.

Architecture

48

Table 6-1. Exceptions defined for the R3900 Processor Core

Exception Mnemonic Cause

Reset Reset † This exception is raised when the reset signal is de-asserted after
having been asserted.

UTLB Refill UTLB Reserved for an MMU with TLB.
TLB Refill TLBL (load)

TLBS (store)
Reserved for an MMU with TLB. Used for exception request by a
memory access protection circuit. This exception is raised when
access is attempted to a protected memory area.

TLB Modified Mod Reserved for an MMU with TLB.
Bus Error IBE (instruction)

DBE (data)
An external interrupt raised by a bus interface circuit. A Bus Error
exception is raised when an event such as bus time-out, bus parity
error, invalid memory address or invalid access type is detected,
causing the bus-error pin to be asserted.

Address Error AdEL (load)
AdES (store)

This exception occurs with a misaligned access or an attempt to
access a privileged area in user mode. Specific causes are:
• Load, store or instruction fetch of a word not aligned on a word

boundary.
• Load or store of a halfword not aligned on a halfword boundary.
• Access attempt to kseg (including kseg0, kseg1, kseg2) in user

mode.
Overflow Ov This exception is raised for a two's complement overflow occurring

with an add or subtract instruction.
System Call Sys This exception is raised when a SYSCALL instruction is executed.
Breakpoint Bp This exception is raised when a BREAK instruction is executed.
Reserved
Instruction

RI This exception is raised when an undefined or reserved instruction
is issued.

Coprocessor
Unusable

CpU This exception is raised when a coprocessor instruction is issued
for a coprocessor whose CU bit in the corresponding Status
register is not set.

Interrupt Int This exception is raised when an interrupt condition occurs.
Non-maskable
Interrupt

NmI† This exception is raised at the falling edge of the non-maskable
interrupt signal.

Debug Exception Debug Single Step exception and Debug Breakpoint exception.
See chapter 8 for detail

† Not an ExcCode mnemonic.

Architecture

49

Table 6-2 shows the vector address of each exception and the values in the exception code (ExcCode) field of

the Cause register.

Table 6-2. Exception vector addresses and exception codes

Exception Mnemonic Vector address † Exception code

Reset Reset 0xBFC0 0000 (0xBFC0 0000) undefined
Non-maskable
Interrupt

NmI undefined

UTLB Refill UTLB(load) 0x8000 0000 (0xBFC0 0100) TLBL(2)
UTLB(store) TLBS (3)

TLB Refill TLBL (load) 0x8000 0080 (0xBFC0 0180) TLBL (2)
TLBS (store) TLBS (3)

TLB Modified Mod Mod (1)
Bus Error IBE (instruction) IBE (6)

DBE (data) DBE (7)
Address Error AdEL (load) AdEL (4)

AdES (store) AdES (5)
Overflow Ov Ov (12)
System Call Sys Sys (8)
Breakpoint Bp Bp (9)
Reserved
Instruction

RI Rl (10)

Coprocessor
Unusable

CpU CpU (11)

Interrupt Int Int (0)
Debug 0xBFC0 0200(0xBFC0 0200) − ††

† The addresses shown here are virtual addresses. The address in parentheses
applies when the Status register BEV bit is set to 1.

†† Cause of exception is shown in Debug register. See Chapter 8 for detail.

Architecture

50

6.2 Exception Processing Registers

The system control coprocessor (CP0) has seven registers for exception processing, shown in Figure 6-1.

(a) Cause register

Indicates the nature of the most recent exception.

(b) EPC (Exception Program Counter) register

Holds the program counter at the time the exception occurred, indicating the address where processing

is to resume after exception processing is completed.

(c) Status register

Holds the operating mode status (user mode or kernel mode), interrupt mask status, diagnostic status

and other such information.

(d) BadVAddr (Bad Virtual Address) register

Holds the most recent virtual address for which a virtual address translation error occurred.

(e) PRId (Processor Revision Identifier) register

Shows the revision number of the R3900 Processor Core.

(f) Cache register

Controls the instruction cache (reserved) and the data cache auto-lock bits.

Note : In addition to the above exception processing registers, the CP0 registers include a Debug and DEPC

register for use in debugging. See chapter 8 for detail.

Figure 6-1. Exception processing registers

BadVAddr

Config

Status

EPC

PRId

Cache

Cause

Architecture

51

6.2.1 Cause register (register no.13)

31 30 29 28 27 16 15 10 9 8 7 6 2 1 0

BD 0 CE[1:0] 0 IP[5:0] Sw[1:0] 0 ExCode 0

1 1 2 12 6 2 1 5 2

Bits Mnemonic Field name Description Value on Reset Read/Write

31 BD Branch
Delay

Set to 1 when the most recent
exception was caused by an
instruction in the branch delay slot
(executed during a branch).

Undefined Read

29-28 CE Coprocessor
Error

Indicates the coprocessor unit
number referenced when a
Coprocessor Unusable exception is
raised. (CE1, CE0)
(0, 0) = coprocessor unit no. 0
(0, 1) = coprocessor unit no. 1
(1, 0) = coprocessor unit no. 2
(1, 1) = coprocessor unit no. 3

Undefined Read

15-10 IP Interrupt
Pending

Indicates a held external interrupt.
The status of the external interrupt
signal line is shown.

Undefined Read

9-8 Sw Software
Interrupt

Indicates a held software interrupt.
This field can be written in order to
set or reset a software interrupt.

Undefined Read/Write

6-2 ExcCode Exception
Code

Holds an exception code (ExcCode)
indicating the cause of an exception.
The causes corresponding to each
exception code are shown in Table
6-3.

Undefined Read

30
27-16

7
1-0

0 Ignored on write; zero when read. 0 Read

For active interrupt signals, the corresponding IP bit is set to 1. For inactive interrupt signals, the IP bit is

cleared to 0. The IP bit indicates the interrupt signal directly, independent of the Status register IEc bit and

IntMask bit.

Figure 6-2. Cause register

Architecture

52

Table 6-3. ExcCode field

ExcCode Field of Cause Register

No. Mnemonic Cause

0 Int External interrupt
1 Mod TLB Modified exception
2 TLBL TLB Refill exception (load instruction or instruction fetch)
3 TLBS TLB Refill exception (store instruction)
4 AdEL Address Error exception (load instruction or instruction fetch)
5 AdES Address Error exception (store instruction)
6 IBE Bus Error (instruction fetch) exception
7 DBE Bus Error (data load instruction or store instruction) exception
8 Sys System Call exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception

13-31 - reserved

6.2.2 EPC (Exception Program Counter) register (register no.14)

The EPC register is a 32-bit read-only register that stores the address at which processing should

resume after an exception ends.

The address placed in this register is the virtual address of the instruction causing the exception. If it

is an instruction to be executed during a branch (the instruction in the branch delay slot), the virtual

address of the immediately preceding branch instruction is placed in the EPC instead. In this case,

the BD bit in the Cause register is set to 1.

31 0

EPC

32

Figure 6-3. EPC register

Architecture

53

6.2.3 Status register (register no.12)

This register holds the operating mode status (user mode or kernel mode), interrupt masking status,

diagnosis status and similar information.

31 28 25 22 21 20 19 16 15 8 76 5 4 3 2 1 0

CU[3:0] 0 RE 0 BEV T

S

Nml 0 IntMask

Int[5:0] Sw[1:0]
0 KUo IEo KUp IEp KUc IEc

4 2 1 2 1 1 1 4 8 2 1 1 1 1 1 1

Bits Mnemonic Field name Description
Value on

Reset
Read/
Write

31-28 CU Coprocessor
Usability

The usability of the four coprocessors
CP0 through CP3 is controlled by bits
CU0 to CU3, with 1 = usable and 0 =
unusable.

Undefined Read/
Write

25 RE Reverse
Endian

Setting this bit in user mode reverses the
initial setting of the endian.

Undefined Read/
Write

22 BEV† Bootstrap
Exception
Vector

When this bit is set to 1, if a UTLB Refill
exception or general exception occurs,
the alternate bootstrap vector (the vector
address shown in parentheses in Table
6-2) is used.

1 Read/
Write

21 TS† TLB Shutdown This bit is set to 1 when the TLB
becomes unusable. It is always set to 1
when the internal MMU is enabled.

1 Read

20 NmI Non-maskable
Interrupt

This bit is set to 1 when a non-maskable
interrupt occurs. Writing 1 to this bit
clears it to 0.

0 Read/
Write

15-8 IntMask Interrupt Mask These are mask bits corresponding to
hardware interrupts Int5..0 and software
interrupts Sw1..0. Here 1 = interrupt
enabled and 0 = interrupt masked.

Undefined Read/
Write

5 KUo Kernel/User
Mode old

0 = kernel mode;
1 = user mode.

Undefined Read/
Write

4 IEo Interrupt
Enabled old

1 = interrupt enabled;
0 = interrupt masked.

Undefined Read/
Write

3 KUp Kernel/User
Mode previous

0 = kernel mode;
1 = user mode.

Undefined Read/
Write

2 IEp Interrupt
Enabled
previous

1 = interrupt enabled;
0 = interrupt masked.

Undefined Read/
Write

1 KUc Kernel/User
Mode current

0 = kernel mode;
1 = user mode.

0 Read/
Write

0 IEc Interrupt
Enabled
current

1 = interrupt enabled;
0 = interrupt masked.

0 Read/
Write

† Used mainly for diagnosis and testing.

Architecture

54

Figure 6-4. Status register (1/2)

Architecture

55

Bits Mnemonic Field name Description
Value on

Reset
Read/
Write

27-26
24-23
19-16
7-6

0 Ignored on write; 0 when read. 0 Read

Figure 6-4. Status register (2/2)

(1) CU (Coprocessor Usability)

The CU bits CU0 - CU3 control the usability of the four coprocessors CP0 through CP3.

Setting a bit to 1 allows the corresponding coprocessor to be used, and clearing the bit to 0

disables that coprocessor. When an instruction for a coprocessor operation is used, the CU

bit for that coprocessor must be set; otherwise a Coprocessor Unusable exception will be

raised. Note that when the R3900 Processor Core is operating in kernel mode, the system

control coprocessor CP0 is always usable regardless of how CU0 is set.

(2) RE (Reverse Endian)

The RE bit determines whether big endian or little endian format is used when the processor is

initialized after a Reset exception. This bit is valid only in user mode; setting it to 1 reverses

the initial endian setting. In kernel mode the endian is always governed by the endian signal

set in a Reset exception. Since the RE bit status is undefined after a Reset exception, it

should be initialized by the Reset exception handler in kernel mode.

(3) TS (TLB Shutdown)

The TS bit is always 1.

(4) BEV (Bootstrap Exception Vector)

If the BEV bit is set to 1, then the alternate vector address is used for bootstrap when a UTLB

Refill exception or general exception occurs. If BEV is cleared to 0, the normal vector

address is used. Immediately after a Reset exception, BEV is set to 1.

The alternate vector address allows an exception to be raised to invoke a diagnostic test prior

to testing for normal operation of the cache and main memory systems.

Architecture

56

(5) NmI (Non-maskable Interrupt)

This bit is set to 1 when a non-maskable interrupt is raised by the falling edge of the non-

maskable interrupt signal. The bit is cleared to 0 by writing a 1 to it or when a Reset

exception is raised.

(6) IntMask (Interrupt Mask)

The IntMask bits separately enable or mask each of six hardware and two software interrupts.

Clearing a corresponding bit to 0 masks an interrupt, and setting it to 1 enables the interrupt.

Note that clearing the IEo/IEp/IEc interrupt enable bits, explained below, has the effect of

masking all interrupts.

(7) KUc/KUp/KUo (Kernel/User mode: current/previous/old)

The three bits KUc/KUp/KUo form a three-level stack, indicating the current, previous and

old operating modes. For each bit, 0 indicates kernel mode and 1 is user mode. The way

these bits are manipulated and used in exception processing is explained in 6.2.5 below. KUc

is cleared to 0 when exception raises.

(8) IEc/IEp/IEo (Interrupt Enable: current/previous/old)

The three bits IEc/IEp/IEo form a three-level stack, indicating the current, previous and old

interrupt enable status. For each bit, 0 means interrupts are disabled, and 1 means interrupts

are enabled. The way these bits are manipulated and used in exception processing is

explained in 6.2.5 below. IEc is cleared to 0 when exception raises.

Architecture

57

6.2.4 Cache register (register no.7)

This register controls the cache lock function.

31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 IAL

o

DAL

o

IAL

p

DAL

p

IAL

c

DAL

c

0

18 1 1 1 1 1 1 0

Bits Mnemonic Field name Description
Value on

Reset
Read/
Write

13 IALo Instruction Cache
Lock(old)

1 = cache lock enable;
0 = cache lock disable

0 Read/
Write

12 DALo Data Cache
Lock(old)

1 = cache lock enable;
0 = cache lock disable

0 Read/
Write

11 IALp Instruction Cache
Lock(previous)

1 = cache lock enable;
0 = cache lock disable

0 Read/
Write

10 DALp Data Cache
Lock(previous)

1 = cache lock enable;
0 = cache lock disable

0 Read/
Write

9 IALc Instruction Cache
Lock(current)

1 = cache lock enable;
0 = cache lock disable

0 Read/
Write

8 DALc Data Cache
Lock(current)

1 = cache lock enable;
0 = cache lock disable

0 Read/
Write

31-14
7-0

0 Ignored on write; 0 when read. 0 Read

Figure 6-5. Cache register

Architecture

58

(1) DALc/DALp/DALo (Data Cache Auto-Lock: current/previous/old)

The three bits DALc/DALp/DALo form a three-level stack, indicating the current, previous

and old auto-lock status of the data cache. For each bit, 1 means the lock is in effect, and 0

means it is not. A Reset exception clears DALc, DALp and DALo to 0.

When the R3900 Processor Core responds to an exception, it saves the value of the current

data cache auto-lock mode (DALc) in the previous mode bit (DALp), and that of the previous

mode bit (DALp) in the old mode bit (DALo). The current data cache auto-lock mode

(DALc) is cleared to 0, disabling the data cache lock function.

These bits are valid only when a cache with lock function is implemented.

(2) IALc/IALp/IALo (Instruction Cache Auto-Lock: current/previous/old)

The three bits IALc/IALp/IALo form a three-level stack, indicating the current, previous and

old auto-lock status of the instruction cache. For each bit, 1 means the lock is in effect, and

0 means it is not. A Reset exception clears IALc, IALp and IALo to 0.

When the R3900 Processor Core responds to an exception, it saves the value of the current

instruction cache auto-lock mode (IALc) in the previous mode bit (IALp), and that of the

previous mode bit (IALp) in the old mode bit (IALo). The current instruction cache auto-

lock mode (IALc) is cleared to 0, disabling the instruction cache lock function.

These bits are valid only when a cache with lock function is implemented.

Architecture

59

6.2.5 Status register and Cache register mode bit and exception processing

When the R3900 Processor Core responds to an exception, it saves the values of the current operating

mode bit (KUc) and current interrupt enabled mode bit (IEc) in the previous mode bits (KUp and IEp).

It saves the values of the previous mode bits (KUp and IEp) in the old mode bits (KUo and IEo). The

current mode bits (KUc and IEc) are cleared to 0, with the processor going to kernel mode and

interrupts disabled.

Likewise, the R3900 Processor Core saves the values of the current data cache auto-lock mode bit

(DALc) and current instruction cache auto-lock mode bit (IALc) in the previous mode bits (DALp and

IALp). It saves the values of the previous mode bits (DALp and IALp) in the old mode bits (DALo

and IALo). The current mode bits (DALc and IALc) are cleared to 0, disabling the data cache and

instruction cache lock functions.

Provision of these three-level mode bits means that, before the software saves the Status register

contents, the R3900 Processor Core can respond to two levels of exceptions. Figure 6-6 shows the

Status register and Cache register save operations used by the R3900 Processor Core in exception

processing.

KUo IEo KUp IEp KUc IEc

Exception raised

KUo IEo KUp IEp KUc IEc

(a) Status register

0 0 0 IAL

o

DAL

o

IAL

p

DAL

p

IAL

c

DAL

c

0 0 0 0 0 0 0 0

Exception raised

0 0 0 IAL

o

DAL

o

IAL

p

DAL

p

IAL

c

DAL

c

0 0 0 0 0 0 0 0

(b) Cache register

Figure 6-6. Status regisuter and cache register when an exception is raised

0 0

0 0

Architecture

60

After an exception handler has executed to perform exception processing, it must issue an RFE

(Restore From Exception) instruction to restore the system to its previous status.

The RFE instruction returns control to processing that was in progress when the exception occurred.

When a RFE instruction is executed, the previous interrupt enabled bit (IEp) and previous operating

mode bit (KUp) in the Status register are copied to the corresponding current bits (IEc and KUc).

The old mode bits (IEo and KUo) are copied to the corresponding previous mode bits (IEp and KUp).

The old mode bits (IEo and KUo) retain their current values.

Likewise, the previous data cache auto-lock mode bit (DALp) and previous instruction cache auto-

lock mode bit (IALp) in the Cache register are copied to the corresponding current bits (DALc and

IALc). The old mode bits (DALo and IALo) are copied to the corresponding previous mode bits

(DALp and IALp). The old mode bits (DALo and IALo) retain their current values.

Figure 6-7 shows how the RFE instruction works.

KUo IEo KUp IEp KUc IEc

RFE instruction issued

KUo IEo KUp IEp KUc IEc

(a) Status register

0 0 0 IAL

o

DAL

o

IAL

p

DAL

p

IAL

c

DAL

c

0 0 0 0 0 0 0 0

RFE instruction issued

0 0 IAL

o

DAL

o

IAL

p

DAL

p

IAL

c

DAL

c

0 0 0 0 0 0 0 0

(b) Cache register

Figure 6-7. Status register and cache register when an RFE instruction is issued

Architecture

61

6.2.6 BadVAddr (Bad Virtual Address) register (register no.8)

When an Address Error exception (AdEL or AdES) is raised, the virtual address that caused the error

is saved in the BadVAddr register.

When a TLB Refill, TLB Modified or UTLB Refill exception is raised, the virtual address for which

address translation failed is saved in BadVaddr.

BadVaddr is a read-only register.

Note : A bus error is not the same as an Address Error and does not cause information to be saved

in BadVaddr.

31 0

Bad Virtual Address

6.2.7 PRId (Processor Revision Identifier) register (register no.15)

PRId is a 32-bit read-only register, containing information concerning the implementation and

revision level of the processor and system control coprocessor (CP0).

The register format is shown in Figure 6-9.

31 16 15 8 7 0

0 Imp Rev

16 8 8

Bits Mnemonic Field name Description
Value on

Reset
Read/
Write

15-8 Imp Implementation
number

R3900 Processor Core ID 0x22 Read

7-0 Rev Revision
identifier

R3900 Processor Core revision ID† † Read

31-16 0 Ignored on write; 0 when read. 0 Read
† Value is shown in product sheet.

Figure 6-9. PRId register

Figure 6-8. BadVaddr register

Architecture

62

6.2.8 Config (Configuration) register (register no.3)

This register designates the R3900 Coprocessor Core configuration.

31 21 19 18 16 11 10 9 8 7 6 5 4 3 2 1 0

0 ICS DCS 0 RF IRSize DRSize

Bits Mnemonic Field name Description
Value on

Reset
Read/
Write

21-19 ICS Instruction
Cache Size

Indicates the instruction cache size.
000: 1 KB;
001: 2 KB;
010: 4 KB;
011: 8 KB;
1xx : (reserved)

† Read

18-16 DCS Data Cache
Size

Indicates the data cache size.
000: 1 KB;
001: 2 KB;
010: 4 KB;
011: 8 KB;
1xx : (reserved)

† Read

11-10 RF Reduced
Frequency

Controls clock divider to determine
reduced frequency provided
externally from R3900 master clock.
Please refer product's user manual
for detail.

00 Read/
Write

9 Doze Doze†† Setting this bit to 1 puts the R3900
Processor Core in Doze mode and
stalls the pipeline. This state is
canceled by a Reset exception when
a reset signal is received, or when
cancelled by a non-maskable
interrupt signal or interrupt signal
that clears the Doze bit to 0. The
Doze bit is cleared even if interrupts
are masked. Data cache snoops
are possible during Doze mode.

0 Read/
Write

† implemented cache size
†† Operation is undefined when both Doze bit and Half bit are set to 1.

Figure 6-10. Config register (1/2)

Doze
Halt
Lock
DCBR
ICE
DCE

Architecture

63

Bits Mnemonic Field name Description
Value on

Reset
Read/
Write

8 Halt†† Halt Setting this bit to 1 puts the R3900
Processor Core in Halt mode. This
state is canceled by a Reset exception
when a reset signal is received, or
when cancelled by a non-maskable
interrupt signal or interrupt signal that
clears the Halt bit to 0. The Halt bit is
cleared even if interrupts are masked.
Data cache snoops are not possible in
Halt mode. Halt mode reduces power
consumption to a greater extent than
Doze mode.

0 Read/
Write

7 Lock Lock Config
register

Setting this bit to 1 prevents further
writes to the Config register. This bit
is cleared to 0 by a Reset exception.
If a store instruction is used to set other
bits at the same time as the Lock bit,
the other settings are valid.

0 Reset

6 DCBR Data Cache Burst
Refill

1:Indicates that the value in the
DRSize field of the Config register
should be used as the data cache
refill size.

0:The data cache refill size is 1 word (4
bytes).

0 Read/
Write

5 ICE Instruction Cache
Enable

Setting this bit to 1 enables the
instruction cache.

1 Read/
Write

4 DCE Data Cache
Enable

Setting this bit to 1 enables the data
cache.

1 Read/
Write

3-2 IRSize Instruction Burst
Refill Size

These bits designate the instruction
cache burst refill size as follows.
00: 4 words (16 bytes)
01: 8 words (32 bytes)
10: 16 words (64 bytes)
11: 32 words (128 bytes)

00 Read/
Write

1-0 DRSize Data Burst Refill
Size

These bits indicate the data cache
burst refill size as follows. (This
setting is valid only when the DCBR bit
in the Config register is set to 1.)
00: 4 words (16 bytes)
01: 8 words (32 bytes)
10: 16 words (64 bytes)
11: 32 words (128 bytes)

00 Read/
Write

31-22,
15-12

0 Ignored on write; 0 when read 0 Read

Note : † After modifications to DCBR, ICE, DCE, IRSize or DRSize, the new cache configuration takes effect after
completion of the currently executing bus operation (cache refill).
†† Operation is undefined when both Doze bit and Halt bit are set to 1.

Figure 6-10. Config register(2/2)

Architecture

64

6.3 Exception Details

6.3.1 Memory location of exception vectors

Exception vector addresses are stored in an area of kseg0 or kseg1.

The vector address of the Reset and NmI exceptions is always in a non-cacheable area of kseg1.

Vector addresses of the other exceptions depend on the Status register BEV bit. When BEV is 0 the

other exceptions are vectored to a cacheable area of kseg0.

When BEV is 1, all vector addresses are in a non-cacheable area of kseg1.

Exception Vector address (virtual address)
BEV bit = 0 BEV bit = 1

Reset, NmI 0xBFC0 0000 0xBFC0 0000
UTLB Refill 0x8000 0000 0xBFC0 0100
Debug 0xBFC0 0200 0xBFC0 0200
Other 0x8000 0080 0xBFC0 0180

Exception Vector address (physical address)
BEV bit = 0 BEV bit = 1

Reset, NmI 0x1FC0 0000 0x1FC0 0000
UTLB Refill 0x0000 0000 0x1FC0 0100
Debug 0x1FC0 0200 0x1FC0 0200
Other 0x0000 0080 0x1FC0 0180

The virtual address 0xBFC0 0200 is used as the vector address for Debug exceptions. Details are

given in Chapter 8.

Architecture

65

6.3.2 Address Error exception

• Causes

− Attempting to load, fetch or store a word not aligned on a word boundary.

− Attempting to load or store a halfword not aligned on a halfword boundary.

− Attempting to access kernel mode address space kseg while in user mode.

• Exception mask

The Address Error exception is not maskable.

• Applicable instructions

LB, LBU, LH, LHU, LW, LWL, LWR, SB, SH, SW, SWL, SWR.

• Processing

− The common exception vector (0x8000 0080) is used.

− ExcCode AdEL(4) or AdES(5) in the Cause register is set depending on whether the memory

access attempt was a load or store.

− When the Address Error exception is raised, the misaligned virtual address causing the

exception, or the kernel mode virtual address that was illegally referenced, is placed in the

BadVAddr register.

− The EPC register points to the address of the instruction causing the exception. If, however, the

affected instruction was in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

Architecture

66

6.3.3 Breakpoint exception

• Cause

− Execution of a BREAK command.

• Exception mask

The Breakpoint exception is not maskable.

• Applicable instructions

BREAK

• Processing

− The common exception vector (0x8000 0080) is used.

− BP(9) is set for ExcCode in the Cause register.

− The EPC register points to the address of the instruction causing the exception. If, however, the

affected instruction was in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

• Servicing

When a Breakpoint exception is raised, control is passed to the designated handling routine.

The unused bits of the BREAK instruction (bits 26 to 6) can be used to pass information to the

handler. When loading the BREAK instruction contents, the instruction pointed to by the EPC

register is loaded. Note that when the Cause register BD bit is set to 1 (when the BREAK

instruction is in the branch delay slot), it is necessary to add +4 to the EPC register value.

In returning from the exception handler, +4 must be added to the address in the EPC register to

avoid having the BREAK instruction executed again. If the Cause register BD bit is set to 1

(when the immediately preceding instruction was a branch instruction), the branch instruction

must be interpreted and set in the EPC register so that the return from the exception handler will

be made to the branch destination of the immediately preceding branch instruction.

Architecture

67

6.3.4 Bus Error exception

• Causes

− This exception is raised when a bus error signal is input to the R3900 Processor Core during a

memory bus cycle.

This occurs during execution of the instruction causing the bus error. The memory bus cycle

ends upon notification of a bus error. When a bus error is raised during a burst refill, the

following refill is not performed.

A bus error request made by asserting a bus error signal will be ignored if the R3900 Processor

Core is executing a cycle other than a bus cycle. It is therefore not possible to raise a Bus Error

exception in a write access using a write buffer. A general interrupt must be used instead.

• Exception mask

The Bus Error exception is not maskable.

• Applicable instructions

LB, LBU, LH, LHU, LW, LWL, LWR, SB, SH, SW, SWL, SWR; any fetch instruction.

• Processing

− The common exception vector (0x8000 0080) is used.

− IBE(6) or DBE(7) is set for ExcCode in the Cause register.

− The EPC register will have an undefined value except in the following cases.

(1) A SYNC instruction follows execution of a load instruction.

(2) An instruction that follows execution of a load instruction while one-word data cache

refill size is in effect, or that follows a load instruction that loads data from an uncached

area, needs to use the result of the load.

In the above case, since the load delay slot instruction will stall until the end of the read

operation, the EPC will contain the load delay slot address when a bus error occurs.

Note : When the destination address of a load instruction is r0 and the following instruction

uses r0, the R3900 Processor Core will not stall.

− The R3900 Processor Core stores the Status register bits KUp, IEp, KUc and IEc in KUo, IEo,

KUp and IEp, respectively, and clears the KUc and IEc bits to 0.

And, the R3900 Processor Core stores Cache register bits DALp, IALp, DALc and IALc in

DALo, IALo, DALp and IALp, respectively, and clears the DALc and IALc bits to 0.

− The R3900 Processor Core does not store the cache block in cache memory if the block includes

a word for which a bus error occurred.

Architecture

68

− When a bus error occurs with a load instruction, the destination register value will be undefined.

− In the following cases, a Bus Error exception may be raised even though the instruction causing

the bus error did not actually execute.

(1) When a bus error occurs during an instruction cache refill, but the instruction sequence is

changed due to a jump/branch instruction in the instruction stream, the instruction at the

address where the bus error occurred may not actually execute.

(2) When a bus error occurs in a data cache block refill, the data at the address where the bus

error occurred may not actually have been used.

• Servicing

The address in the EPC register is undefined. In some cases it is not possible to determine the

address where a bus error actually occurred. If this address is required, then external hardware

must be used to store addresses. Using such an external circuit will allow you to retain the

address where a bus error occurs.

Architecture

69

6.3.5 Coprocessor Unusable exception

• Cause

− Attempting to execute a coprocessor CPz instruction when its corresponding CUz bit in the

Status register is cleared to 0 (coprocessor unusable).

− In user mode, attempting to execute a CP0 instruction when the CU0 bit is cleared to 0. (In

kernel mode, an exception is not raised when a CP0 instruction is issued, regardless of the CU0

bit setting.)

• Exception mask

The Coprocessor Unusable exception is not maskable.

• Applicable instructions

Coprocessor instructions : LWCz, SWCz, MTCz, MFCz, CTCz, CFCz, COPz, BCzT, BCzF,

BCzTL, BCzFL

Coprocessor 0 instructions : MTC0, MFC0, RFE, COP0

• Processing

− The common exception vector (0x8000 0080) is used.

− CpU(11) is set for ExcCode in the Cause register.

− The coprocessor number referred to at the time of the exception is stored in the Cause register

CE (Coprocessor Error) field.

− The EPC register points to the address of the instruction causing the exception. If, however,

that instruction is in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

Architecture

70

6.3.6 Interrupts

• Cause

− An Interrupt exception is raised by any of eight interrupts (two software and six hardware). A

hardware interrupt is raised when the interrupt signal goes active. A software interrupt is raised

by setting the Sw1 or Sw0 bits in the Cause register.

• Exception mask

− Each of the eight interrupts can be masked individually by clearing its corresponding bit in the

IntMask field of the Status register.

− All interrupts can be masked by clearing the Status register IE bit to 0.

• Processing

− The common exception vector (0x8000 0080) is used.

− Int(0) is set for ExcCode in the Cause register.

− The Cause register IP and Sw fields indicate the status of current interrupt requests. It is

possible for more than one of these bits to be set or for none to be set (when an interrupt is

asserted and then de-asserted before the register is read).

Notes : You should disable interrupts when executing the RFE instruction because the Status

register contents will be undefined when an interrupt occurs while executing the RFE

instruction.

• Servicing

An interrupt condition set by one of the two software interrupts can be cleared by clearing the

corresponding Cause register bit (Sw1 or Sw0) to 0.

For hardware-generated interrupts, the condition can only be cleared by determining and

handling the source of the corresponding active signal.

The IP field indicates the status of interrupt signals regardless of the Status register IntMask

field. The cause of an interrupt should be determined from a logical AND of the IP and IntMask

fields.

− The EPC register points to the address of the instruction causing an exception. If, however, that

instruction is in the branch delay slot (for execution during a branch), the immediately preceding

branch instruction address is retained in the EPC register and the Cause register BD bit is set to

1.

Architecture

71

6.3.7 Overflow exception

• Cause

− A two's complement overflow results from the execution of an ADD, ADDI or SUB instruction.

• Exception mask

The Overflow exception is not maskable.

• Applicable instructions

ADD, ADDI, SUB

• Processing

− The common exception vector (0x8000 0080) is used.

− Ov(12) is set for ExcCode in the Cause register.

− The EPC register points to the address of the instruction causing the exception. If, however,

that instruction is in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

6.3.8 Reserved Instruction exception

• Cause

− Attempting to execute an instruction whose major opcode (bits 31..26) is undefined, or a special

instruction whose minor opcode (bits 5..0) is undefined.

− Attempting to execute reserved instruction (LWCz and SWCz).

• Exception mask

− The Reserved Instruction exception is not maskable.

• Processing

− The common exception vector (0x8000 0080) is used.

− RI(10) is set for ExcCode in the Cause register.

− The EPC register points to the address of the instruction causing the exception. If, however,

that instruction is in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

Architecture

72

6.3.9 Reset exception

• Cause

− The reset signal in the R3900 Processor Core is asserted and then de-asserted.

• Exception mask

The Reset exception is not maskable.

• Processing

− A special interrupt vector (0xBFC0 0000) that resides in an uncached area is used. It is

therefore not necessary for hardware to initialize cache memory in order to process this

exception.

− The contents of all registers in the R3900 Processor Core become undefined. See the description

of each register earlier in this section for details.

− All data cache and instruction cache valid bits are cleared to 0, as are all data cache lock bits.

− If a Reset exception is raised during a bus cycle, the bus cycle is immediately ended and the reset

is allowed to proceed.

Architecture

73

6.3.10 System Call exception

• Cause

− Execution of an R3900 Processor Core SYSCALL instruction.

• Exception mask

The System Call exception is not maskable.

• Applicable instructions

SYSCALL

• Processing

− The common exception vector (0x8000 0080) is used.

− Sys(8) is set for ExcCode in the Cause register.

− The EPC register points to the address of the instruction causing the exception. If, however,

that instruction is in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

6.3.11 Non-maskable interrupt

• Cause

− Occurs at the falling edge of the non-maskable interrupt signal.

• Exception mask

The Non-maskable exception is not maskable. It is raised regardless of the Status register IEc

bit setting.

• Processing

− The same special interrupt vector as for Reset (0xBFC0 0000), residing in an area that is not

cached, is used. It is therefore not necessary for hardware to initialize cache memory in order

to process this exception.

− Unlike the Reset exception, here the Status register NmI bit is set.

− As with other exceptions (except for the Reset exception), the NmI exception occurs at an

instruction boundary. If a Non-maskable interrupt occurs during a bus cycle, interrupt

processing waits until the bus cycle has ended.

− All register contents are retained except for the following.

° The EPC register points to the address of the instruction causing the exception. If, however,

that instruction is in the branch delay slot (for execution during a branch), the immediately

preceding branch instruction address is retained in the EPC register and the Cause register BD

bit is set to 1.

° The Status register NmI bit is set to 1.

° The Config register Halt bit and Doze hit are cleared to 0.

° The Cause register CE bit and ExcCode are undefined.

Architecture

74

Architecture

75

6.4 Priority of Exceptions

More than one exception may be raised for the same instruction, in which case only the exception with the

highest priority is reported. The R3900 Processor Core instruction exception priority is shown in Table 6-5.

See chapter 8 for the priority of debug exceptions.

Table 6-5. Priority of Exceptions

Priority Exception (Mnemonic)

High Reset
s IBE (instruction fetch)

DBE (data access)
NmI
AdEL (instruction fetch)
TLBL (instruction fetch)
CpU
Ov, Sys, Bp, RI
AdEL (load instruction)
AdES (store instruction)
TLBL (data load)
TLBS (store instruction)

t Mod
Low Int

6.5 Return from Exception Handler

An example of returning from an exception handler is shown below.

MFC0 r27, EPC (store return address in general register)

JR r27 (jump to return address)

RFE (execute RFE instruction in branch delay slot)

Architecture

74

7.

Architecture

75

Chapter 7 Caches

The R3900 Processor Core is equipped with separate on-chip caches for data and instructions. These caches

can be configured in a variety of sizes as required by the user system.

Note : Currently only the cache configuration described below is supported. It consists of a 4 Kbyte

instruction cache and 1 Kbyte data cache.

7.1 Instruction Cache

The instruction cache has the following specifications.

− Cache size : 4 Kbytes (Config register ICS bits = 010)

− Direct mapping

− Block (line) size : 4 words (16 bytes)

− Physical cache

− Burst refill size : Choice of 4/8/16/32 words (set in Config register)

− All valid bits are cleared (made invalid) by a Reset exception

Note : The lock function is not currently supported for the instruction cache. Cache register bits IALc, IALp

and IALo do not affect the instruction cache.

Figure 7-1 shows the instruction cache configuration.
World Select : 3 2 1 0

Set address :

20 19 0 31 0 31 0 31 0 31 0

255 V Physical Tag Instruction Instruction Instruction Instruction

3 V Physical Tag Instruction Instruction Instruction Instruction

2 V Physical Tag Instruction Instruction Instruction Instruction

1 V Physical Tag Instruction Instruction Instruction Instruction

0 V Physical Tag Instruction Instruction Instruction Instruction

V : valid bit (1=valid;0=invalid)

Figure 7-2 shows the instruction cache address field.

31 12 11 4 3 2 1 0

Physical Tag Cache Tag Index

Figure 7-1. Instruction cache configuration

World Select
Byte Select

Figure 7-2. Instruction cache address field

Architecture

76

7.2 Data Cache

The data cache has the following specifications.

− Cache size : 1 Kbyte (Config register DCS bits = 000)

− Two-way set-associative

− Replace algorithm : LRU (Least Recently Used)

− Block (line) size : 1 word (4 bytes)

− Write-through

− Physical cache

− Refill size : Choice of size 1/4/8/16/32 words (set in Config register)

− Byte-writable

− All valid bits and lock bits cleared by a Reset exception

− Lock function

Figure 7-3 shows the data cache configuration.

set : 0 1

Set address :

23 22 0 31 0 23 22 0 31 0

127 R L V Physical Tag Data V Physical Tag Data

3 R L V Physical Tag Data V Physical Tag Data

2 R L V Physical Tag Data V Physical Tag Data

1 R L V Physical Tag Data V Physical Tag Data

0 R L V Physical Tag Data V Physical Tag Data

R : LRU replace bit(indicates next set to which replacement will be directed; when lock bit is set to 1,indicates this set is not locked)

L : Lock bit(when set to 1,if R bit is 1,set 0 is locked, and if R bits 0,set 1 is locked; when cleared to 0,lock function is

 disabled)

V : valid bit(1=valid;0=invalid)

Figure 7-3. Data cache configuration

Architecture

77

Figure 7-4 shows the data cache address field.

31 9 8 1 0

Physical Tag Cache Tag Index

When a data store misses, the data is stored to main memory only, not to the cache (no write allocate).

The data cache can be written in individual bytes. (When a byte or halfword store is used, there is no read-

modify-write.)

7.2.1 Lock function

The lock function can be used to route critical data to one data cache set. Data is not replaced when

the lock bit is set.

(1) Lock bit setting

Setting the Cache register DALc bit enables the data cache lock function. When data in a

line is accessed, the lock bit for that line is set and data in the line can no longer be replaced.

If a store miss occurs, the store data is not written to the cache and will therefore not be

locked.

Note : When a block refill takes place, the size of data locked in the cache is the same as the

block refill size.

The Cache register DALc bit can be set at the head of a subroutine or the like, thereby locking

into the cache the data accessed by the subroutine. The lock function can be disabled by

clearing the DALc bit. This does not clear the lock bits of individual lines.

(2) Operation during lock

When the lock bit is set for a line, only data in the set indicated by the LRU replace bit (R)

can be replaced. A write access to a locked line takes place only to cache memory, without

affecting main memory. When a lock has been established by the lock function, store

operations can write to memory.

The Cache register lock bits form a three-layer stack consisting of DALc, DALp and DALo.

If an exception is raised while the lock function is in effect, the stack is pushed (the DALc and

DALp bit values are saved in DALp and DALo, respectively) and DALc is cleared, disabling

the lock function. This is to prevent inadvertent locking of data used by the exception

handler. After the handler has finished processing, a RFE instruction is executed, popping

the stack (the DALo and DALp bit values are restored to DALp and DALc) and refurring the

status to that prior to the exception.

Byte Select

Figure 7-4. Data cache address field

Architecture

78

(3) Lock bit clearing

13 12 11 10 9 8

IALo DALo IALp DALp IALc DALc

exception raised 0 0

IALo DALo IALp DALp IALc DALc

13 12 11 10 9 8

IALo DALo IALp DALp IALc DALc

RFE executed

IALo DALo IALp DALp IALc DALc

IALo,IALp and IALc are reserved for the instruction cache.

The lock bit for an entry is cleared using the CACHE instruction IndexLockBitClear. Clearing

the lock bit disables the lock function.

Clear the lock bit as follows when data written to a locked line should be stored in main

memory.

1) Read the locked data from cache memory

2) Clear the lock bit

3) Store the data that was read

Figure 7-5. Auto-lock bits

Cache register

Architecture

79

7.3 Cache Test Function

(1) Cache disabling

The Config register bits ICE (Instruction Cache Enable) and DCE (Data Cache Enable) are used to

enable and disable the instruction cache and data cache, respectively.

When a cache is disabled, all cache accesses are misses and there is no refill (nor is there any burst

bus cycle; this is the same as accessing a non-cacheable area). The valid bit (V) for each entry

cannot be modified.

(2) Cache flushing

Both the instruction cache and data cache are flushed when a Reset exception is raised (all valid bits

are cleared to 0).

The instruction cache is flushed by the CACHE instruction IndexInvalidate. The data cache is

flushed by the CACHE instruction HitInvalidate.

Note : An instruction cache IndexInvalidate operation is possible only when the instruction cache is

disabled (Config register ICE bit = 0).

Additional explanation : As a sure way of disabling the instruction cache, streaming should be

stopped by inserting a branch instruction after MTC0, as shown below.

Example:

MTC0 Rn, Config (clear ICE to 0)

J L1 (branch to L1; stop streaming)

NOP (branch delay slot)

L1: CACHE IndexInvalidate, offset (base)

(3) Lock bit clearing

The data cache lock bit is cleared by a Reset exception.

It can also be cleared by the CACHE instruction IndexLockClear. (The IndexLockClear instruction

is reserved for clearing instruction cache lock bits.)

Architecture

80

7.4 Cache Refill

A physical cache line in the R3900 Processor Core comprises 4 words for the instruction cache and 1 word for

the data cache. The refill size can be designated independently of the line size. The refill size can be

4/8/16/32 words for the instruction cache, and 1/4/8/16/32 words for the data cache. In a burst read

operation, data or instructions of the designated refill size are read. However, when the data cache refill size is

set to one word (Config register DCBR = 0), a single read operation is performed.

Both caches are refilled from the head of the refill boundary.

Regardless of the refill size, tags are updated one physical line at a time.

Additional explanation : If an instruction changing the cache configuration (MTC0 to modify the Config

register, or any CACHE instruction) is executed during a refill cycle, the new configuration takes

effect after the refill cycle in progress is completed. Note that instruction cache invalidation is

possible only while the instruction cache is disabled.

Missed word
4 words

(a) Instruction cache

Refill size boundary
Refill start word

Refill size

Figure 7-6. Cache refill

Missed word1 word

(b) Data cache

Refill size boundary
Refill start word

Architecture

81

7.5 Cache Snoop

The R3900 Processor Core has a bus arbitration function that releases bus mastership to an external bus

master. Consistency between cache memory and main memory could deteriorate when an external bus master

has write access to main memory. The purpose of the cache snoop function is to maintain this data

consistency.

When the R3900 Processor Core releases the bus, the bus cycle is snooped by an external bus master. If an

address access by the external bus master matches an address stored in the on-chip data cache (cache hit), the

valid bit (V) for that cache data is cleared to 0, invalidating it.

Locked data cannot be invalidated, however, even when a hit occurs in a snoop operation.

After a cache block has been invalidated in a snoop, the LRU bit points to the invalidated cache set.

The lock bit is not changed as the result of a snoop.

Note : A snoop is possible even when the data cache is disabled.

8.

Architecture

82

Architecture

83

Chapter 8 Debugging Functions

The R3900 Processor Core has the following support functions for debugging that have been added to the

R3000A instruction base. They are independent of the R3000A architecture, which makes them transparent to

user programs.

The real-time debugging system is supported by a third party.

Debug exceptions (Single Step, Break Instruction)

Additional register (DEPC) for holding the PC value when a debug exception occurs

Additional register (Debug) for controlling debug exceptions

Additional instruction (DERET) for return from a debug exception

8.1 System Control Processor (CP0) Registers

When a debug exception occurs, only registers Debug and DEPC are updated. The registers accessed by user

application programs (general-purpose registers, Status, Cause, EPC, BadVAddr, PRId, Config and Cache)

retain their values.

Figure 8-1 CP0 Registers

EPC register

BadVAddr register

Status register

Cache register†

Config register†

†R3900 Processor Core additional

 registers not present in R3000A

<Exception Processing>

PRld register

Cause register

Debug register†

<Debugging>

DEPC register†

Architecture

84

The CP0 registers are listed in Table 8-1.

Table 8-1. List of system control coprocessor (CP0) registers

No Mnemonic Description

0

- (reserved)

1

- (reserved)

2

- (reserved)

3

Config† Hardware configuration

4

- (reserved)

5

- (reserved)

6

- (reserved)

7

Cache† Cache lock function

8

BadVAddr Last virtual address triggering error

9

- (reserved)

10 - (reserved)
11 - (reserved)
12 Status Information on mode, interrupt enabled, diagnostic status
13 Cause Indicates nature of last exception
14 EPC Exception program counter
15 PRId Processor revision ID
16 Debug†† Debug exception control
17 DEPC†† Program counter for debug exception
18
 |
31

- (reserved)

† Additional R3900 Processor Core register not present in the R3000A.
†† Additional R3900 Processor Core Debug register not present in the R3000A.

Architecture

85

(1) DEPC (Debug Exception Program Counter) register (register no.17)

The DEPC register holds the address where processing is to resume after the debug exception has

been taken care of.

(Note : DEPC is a read/write register.)

The address that goes in the DEPC register is the virtual address of the instruction that caused the

debug exception. If that instruction is in the branch delay slot, the virtual address of the immediately

preceding branch or jump instruction goes in this register and Debug register DBD bit is set to 1.

Execution of the DERET instruction causes a jump to the DEPC address.

 (Note) When a debug exception occurs, EPC retains its value.

(2) Debug register (register no.16)

31 30 29 16 15 14 13 12 11 10 9 8 7 6 5 0

DBD DM 0 0 NIS <R> OES TLF BsF 0 SSt 0 0 <R> <R> <R> <R> DBP DSS

1 1 14 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1

SSt and BsF are read/write bits; all other bits are read-only, to which writes are ignored.

n DBD (Debug Branch Delay)

When a debug exception occurs while the instruction in the branch delay slot is executing, this

bit is set to 1.

n DM (Debug Mode) (0 at reset)

This bit indicates whether or not a debug exception handler is running. It is set to 1 when a

debug exception is raised, and cleared to 0 upon return from the exception.

0: Debug handler not running

1: Debug handler running

Figure 8-2 DEPC register

Figure 8-3 Debug register

DEPC

031

32

Architecture

86

n NIS (Non-maskable Interrupt Status)

This bit is set to 1 when a Non-maskable interrupt occurs at the same time as a debug

exception. In this case the Status, Cause, EPC and BadVAddr registers assume their usual

status after the occurrence of a Non-maskable interrupt, but the address in DEPC is not the

non-maskable interrupt exception vector address (0xBFC0 0000).

Instead, 0xBFC0 0000 is put in DEPC by the debug exception handler software, after which

processing returns directly from the debug exception to the Non-maskable interrupt handler.

n OES (Other Exceptions Status)

This bit is set to 1 when an exception other than reset, NmI or UTLB Refill occurs at the same

time as a debug exception. In this case the Status, Cause, EPC and BadVAddr registers

assume their usual status after the occurrence of such an exception, but the address in DEPC

will not be the other exception vector address. Instead, 0xBFC0 0180 (if the Status register

BEV bit is 1) or 0x8000 0080 (if BEV is 0) is put in DEPC by the debug exception handler

software, after which processing returns directly from the debug exception to the other

exception handler.

(Note: Only one of bits NIS, or OES is set, according to the priority of exceptions.)

n TLF (TLB Exception Flag)

This bit is set to 1 when a TLB-related exception (TLB Refill, UTLB Refill, Mod) occurs for

the immediately preceding load or store instruction while a debug exception handler is running

(DM bit = 1).

(Note: A check should be made as to whether a TLB-related exception has occurred or not each

time access is made to the user area data.)

n BsF (Bus Error Exception Flag)

This bit is set to 1 when a bus error exception occurs for a load or store instruction while a

debug exception handler is running (DM bit = 1). It is cleared by writing 0 to it.

n SSt (Single Step) (0 at reset)

This bit indicates whether the single step debug function is enabled (set to 1) or disabled

(cleared to 0). The function is disabled when the DM bit is set to 1, i.e., while a debug

exception handler is running. This bit is a read/write bit.

n DBp (bit 1)

Set to 1 to indicate a Debug Breakpoint exception.

Architecture

87

n DSS (bit 0)

Set to 1 to indicate a Single Step exception.

DBp and DSS bits indicate the most recent debug exception. Each bit represents one of the

two debug exceptions and is set to 1 accordingly when that exception occurs.

Note : DSS has a higher priority than DBp, since they occur in the pipeline E stage. For

this reason DSS and DBp are not raised at the same time.

n 0

Ignored when written; returns 0 when read.

n <R>

 Reserved. Undefined value.

8.2 Debug Exceptions

(1) Types of debug exceptions

There are two debug exceptions, as follows.

1) Debug Single Step (DSS)

When the Debug register SS bit is set, this exception is raised each time an instruction is

executed.

2) Debug Breakpoint (DBp)

This exception is raised when an SDBBP instruction is executed.

Note : Since the real-time debugging system function has priority, the above two functions are

disabled when the real-time debugging system is used.

Architecture

88

(2) Debug exception handling

i) Raising a debug exception

n DEPC and Debug register updates

DEPC : The address where the exception was raised is put in this register.

DBD : Set to 1 when the exception was raised for an instruction in the branch delay slot.

DM : Set to 1.

DSS, DBp : Set to 1 if the corresponding exception was raised.

NIS : Set to 1 if a Non-maskable interrupt occurred at the same time as the debug

exception.

OES : Set to 1 if another exception (other than reset, NmI, or UTLB Refill) was raised at

the same time as the debug exception.

n Branching to a debug exception handler

PC : 0xBFC0 0200

(Note : Registers other than DEPC and Debug retain their values.)

n Masking of exceptions and interrupts in a debug exception handler

A load or store instruction for which a TLB-related exception (TLB Refill, UTLB Refill, TLB

Modified) is raised becomes a NOP; the bus cycle is not executed, and the TLF bit is set.

When a bus error exception is requested for a load or store instruction, BsF is set. The

load/store result in this case is undefined.

A Non-maskable interrupt request is held internally, and is raised upon return from the debug

exception handler.

Single Step debug exception is disabled.

Debug interrupts are ignored and not raised.

(Note : The result of exceptions or interrupts other than those noted above is undefined.

Resets are allowed to occur.)

n Cache lock function

This function is disabled regardless of the Cache register value.

ii) Debug exception handler execution

When a debug exception occurs, the user program should determine the nature of the exception from

the Debug register bits (DSS, DBp) and invoke the corresponding exception handler.

Architecture

89

iii) Return from a debug exception handler

n When a user program exception occurs at the same time as a Debug exception, change the DEPC

value so that a return will be made to the exception handler.

When NIS = 1, change DEPC to 0xBFC0 0000.

When OES = 1, change DEPC to 0x8000 0080 (if BEV = 0) or 0xBFC0 0180 (if BEV = 0).

n Executing a DERET instruction

PC: Contains the DEPC value.

Debug register DM: Cleared to 0.

Status register KUc, IEc: Set to 1, enabling interrupts.

The forced disabling of the cache auto-lock function is cleared and becomes governed by the

Cache register value.

Forced prohibition of Single Step exception is cleared, causing these to be governed by the

Debug register SSt.

NmI and debug exception masks are cleared.

(3) Exception priorities

DSS has a higher priority than DBp, since it occurs in the pipeline E stage. For this reason DSS is

not raised at the same time as DBp.

It is further possible for debug exceptions and user exceptions to occur simultaneously. In this case

processing branches first to the debug exception handler, but the Status, Cause, EPC and BadVAddr

registers are updated to the values for the user exception. DEPC is not automatically updated to the

user exception vector address, so the return address must be set by user software.

It is possible for DSS to occur at the same time as an instruction fetch Address Error AdEL or

instruction fetch TLB Refill exception (TLBL). DSS cannot occur simultaneously with any other

exceptions except these two.

The instruction that triggers the instruction fetch Address Error AdEL or instruction fetch TLB Refill

exception (TLBL) will not itself be executed, so it is not possible for DBp to occur at the same time as

these two exceptions.

Architecture

90

8.3 Details of Debug Exceptions

(1) Single Step exception

• Cause

− When the Debug register SSt bit is set, a Single Step exception is raised each time one

instruction is executed.

• Exception masking

− The Single Step exception can be masked by the Debug register SSt bit. When SSt is cleared to

0, a Single Step exception cannot be raised.

(Note : In the debug exception handler, a Single Step exception is masked regardless of the SSt

bit value.)

• Processing

− When this exception is raised, processing jumps to a special debug exception handler at 0xBFC0

0200. (In the R3900 Processor Core, the debug exception vector is located in an uncacheable

address space.)

− The DSS bit in the Debug register is set to 1.

− A Single Step exception is not raised for an instruction in the branch delay slot.

− The DEPC register points to the instruction for which a Single Step exception was raised (the

instruction about to be executed).

− When DERET is issued, a Single Step exception is not raised for an instruction at the return

destination. If the return destination instruction is a branch instruction, a Single Step exception

is not raised for that branch instruction or for the instruction in the branch delay slot.

Architecture

91

(2) Debug Breakpoint exception

• Cause

− A Debug Breakpoint exception is raised when an SDBBP instruction is executed.

• Exception masking

− The Breakpoint exception cannot be masked.

(Note : Its behavior during another debug exception is undefined.)

• Instruction causing this exception

SDBBP

• Processing

− When this exception is raised, processing jumps to a special debug exception handler at 0xBFC0

0200. (In the R3900 Processor Core, the debug exception vector is located in an uncacheable

address space.)

− The DBp bit in the Debug register is set to 1.

− The DEPC register points to the SDBBP instruction, unless that instruction is in the branch delay

slot, in which case the DEPC register points to the branch instruction and the Debug register

DBD bit is set to 1.

• Servicing

The unused bits of the SDBBP instruction (bits 26 to 6) can be used for passing additional

information to the exception handler. In order to allow these bits to be looked at, the user

program should load the contents of the memory word containing this instruction, using the

DEPC register. When Cause register BD bit is set to 1 (the SDBBP instruction is in the branch

delay slot), you should add +4 to the value in EPC register.

Architecture

92

Architecture

93

Appendix A Instruction Set Details

This appendix presents each instruction in alphabetical order, explaining its operation in detail.

Exceptions that might occur during the execution of each instruction are listed at the end of each explanation.

The direct causes of exceptions and how they are handled are explained elsewhere in this manual, and are not

described in detail in this Appendix.

The figure at the end of this appendix (Figure A-2) gives the bit codes for the constant fields of each

instruction. Encoding of bits for some instructions is also indicated in the individual instruction descriptions.

Architecture

94

Instruction Classes
The R3900 Processor Core has five classes of CPU instructions, as follows.

• Load/store

These instructions transfer data between memory and general-purpose registers. "Base register + 16-bit

signed immediate offset" is the only supported addressing mode, so the format of all instructions in this

class is I-type.

• Computational

These instructions perform arithmetic logical and shift operations on register values. The format can be

R-type (when both operands and the result are register values) or I-type (when one operand is 16-bit

immediate data).

• Jump/branch

These instructions change the program flow. A jump is always made to a paged absolute address,

constructed by combining a 26-bit target address with the upper 4 bits of the program counter (J-type

format) or to a 32-bit register address (R-type format). In a branch instruction, the target address is the

program counter value plus a 16-bit offset. With a Jump And Link instruction, the return address is saved

in general register r31.

• Coprocessor

These instructions execute coprocessor operations. Coprocessor load and store instructions have the I-

type format. The format of coprocessor computational instructions differs from one coprocessor to

another.

• Special

These instructions support system calls and breakpoint functions. The format is always R-type.

Architecture

95

Instruction Formats
Every instruction consists of a single word (32 bits) aligned on a word boundary. The main instruction

formats are shown in Figure A-1.

31 26 25 21 20 16 15 0

op rs rt immediate

31 26 25 0

op target

31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd sa funct

op Operation code (6 bits)
rs Source register (5 bits)
rt Target (source or destination) register, or branch condition (5 bits)
rd Destination register (5 bits)
immediate Immediate, branch displacement, address displacement (16 bits)
target Branch target address (26 bits)
sa Shift amount (5 bits)
funct Function (6 bits)

Figure A-1. CPU Instruction Formats

I-type (Immediate)

J-type (Jump)

R-type (Register)

Architecture

96

Instruction Notation Conventions
In this appendix all variable subfields in an instruction format are written in lower-case letters (rs, rt,

immediate, etc.).

For some instructions, an alias is used for subfield names, for the sake of clarity. For example, rs in a

load/store instruction may be referred to as “base”. Such an alias refers to a subfield that can take a variable

value and is therefore also written in lower-case letters.

The figure at the end of this appendix (Figure A-2) gives the actual bit codes for all mnemonics. Bit

encoding is also indicated in the descriptions of the individual instructions.

In the explanations that follow, the operation of each instruction is expressed in meta-language. The special

symbols used in this instructional notation are shown in Table A-1.

Sign Extension and Zero Extension
With some instructions the bit length may be extended; for example, a 16-bit offset may be extended to 32

bits. This extension can take the form of either a sign extension or zero extension.

• Sign extension

The extended part is filled with the value of the most significant bit.

• Zero extension

The extended part is filled with zeros.

11001 10 00 1101 001 16 bit

32 bit11001 10 00 1101 00111111 11 11 1111 111

(Example)

(Example)

11001 10 00 1101 001 16 bit

32 bit11001 10 00 1101 00100000 00 00 0000 000

Architecture

97

Table A-1. Symbols used in instruction operation notation

Symbol Meaning

← Assignment
|| Bit string concatenation
xy Replication of bit value x into a y-bit string. Note that x is always a single-bit value.

xy..z Selection of bits y through z of bit string x. Little endian bit notation is always used
here. If y is less than z, this expression results in an empty (null length) bit string.

+ Two's complement addition
- Two's complement subtraction
* Two's complement multiplication

div Two's complement division
mod Two's complement modulo

< Two's complement "less than" comparison
and Bitwise logical AND operation
or Bitwise logical OR operation
xor Bitwise logical XOR operation
nor Bitwise logical NOR operation

GPR [x] General-purpose register x. The content of GPR[0] is always 0, and attempting to
change this content has no effect.

CPR [z,x] General-purpose register x of coprocessor unit z
CCR [z,x] Control register x of coprocessor unit z
COC [z] Condition signal of coprocessor unit z

BigEndian
Mem

Big endian mode as configured at reset (0: little; 1: big). This determines the which
endian format is used with the memory interface (see Load Memory and Store Memory)
and with kernel mode execution.

Reverse
Endian

A signal to reverse the endian format of load and store instructions. This function can
be used only in user mode. The endian format is reversed by setting the Status
register RE bit. Accordingly, ReverseEndian can be computed as (RE bit AND user
mode).

BigEndian
CPU

The endian format for load and store instructions (0: little; 1: big). In user mode, the
endian format is reversed by setting the RE bit. Accordingly, BigEndianCPU can be
computed as BigEndianMem XOR ReverseEndian.

T + i: This indicates the time steps between operations. Statements within a time step are
defined to execute in sequential order, as modified by condition and rule structures. An
operation marked by T + i: is executed at instruction cycle i relative to the start of the
instruction's execution. For example, an instruction starting at time j executes
operations marked T + i: at time i + j. The order is not defined for two instructions or
two operations executing at the same time.

vAddress Virtual address
pAddress Physical address

Architecture

98

Examples of Instruction Notation
Two examples of the notation used in explaining instructions are given below.

Example 1:
GPR[rt] ← immediate || 016

This means that 16 zero bits are concatenated with an immediate value
(normally 16 bits), and the resulting 32-bit string (with the lower 16 bits
cleared to 0) is assigned to general-purpose register (GPR) rt.
Example 2:

(immediate15)16 || immediate 15..0

Bit 15 (the sign bit) of an immediate value is extended to form a 16-bit
string, which is linked to bits 15 to 0 of the immediate value, resulting in a
32-bit sign-extended value.

Architecture

99

Load and Store Instructions
With the R3900 Processor Core, the instruction immediately following a load instruction can use the loaded

value. Hardware is interlocked for this purpose, causing a delay of one instruction cycle. Programming

should be carried out with an awareness of the potential effects of the load delay slot.

The descriptions of load/store operations make use of the functions listed in Table A-2 in describing the

handling of virtual addresses and physical memory.

Table A-2. Common Load/Store Functions

Function Meaning

AddressTranslation A memory management unit (MMU) is used to find the physical
address based on a given virtual address.

LoadMemory The cache and main memory are used to find the contents of the
word containing the designated physical address. The low-order
two bits of the address and the access type field indicate which of
the four bytes in the data word are to be returned. If the cache is
enabled for this access, the whole word is returned and loaded into
the cache.

StoreMemory The cache, write buffer and main memory are used to store the
word or partial word designated as data in the word containing the
designated physical address. The low-order two bits of the
address and the access type field indicate which of the four bytes
in the data word are to be stored.

The access type field indicates the size of data to be loaded or stored, as given in Table A-3. An address

always designates the byte with the smallest byte address in the addressed field, regardless of the access type

or the order in which bytes are numbered (endian). This is the left-most byte if big endian is used and the

right-most byte if little endian is used.

Architecture

100

Table A-3. Load/Store access type designations

Mnemonic Value Meaning

WORD 3 Word access (32 bits)

TRIPLEBYTE 2 Triplebyte access (24 bits)

HALFWORD 1 Halfword access (16 bits)

BYTE 0 Byte access (8 bits)

The individual bytes in an addressed word can be determined directly from the access type and the low-order

two bits of the address, as shown in Table A-4.

Access type Lower Bytes Accessed

1 0

address bit

1 0

Big endian

31 0

Little endian

31 0

1 1
(word)

0 0

1 0

(triplebyte)

0 0

0 1

0 1

(halfword)

0 0

1 0

0 0

(byte)

0 0

0 1

1 0

1 1

Table A-4. Load/Store byte access

3210

210

321

10

32

0

1

2

3

0123

012

123

01

23

0

1

2

3

Architecture

101

Jump and Branch Instructions
All jump and branch instructions are executed with a delay of one instruction cycle. This means that the

immediately following instruction (the instruction in the delay slot) is executed while the branch target

instruction is being fetched. A jump or branch instruction should never be put in the delay slot; if this is

done, it will not be detected as an error and the result will be undefined.

If an exception or interrupt prevents the delay slot instruction from being completed, the EPC register is set by

hardware to point to the preceding jump or branch instruction. Upon returning from the exception or

interrupt, both the jump/branch instruction and the instruction in the delay slot are executed.

Jump and branch instructions are sometimes restarted after exceptions or interrupts, so they must be made

restartable. When a jump or branch instruction stores a return address value, general-purpose register r31

must not be used as the source register.

Since instructions must be aligned on a word border, the lower two bits of the register value used as an address

with a Jump Register instruction or a Jump And Link Register must be 00. If not, an Address Error exception

will be raised when the target instruction is fetched.

Architecture

102

ADD Add ADD

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADD

100000

6 5 5 5 5 6

Format :

ADD rd, rs, rt

Description :

Adds the contents of general-purpose registers rs and rt and puts the result in general-purpose

register rd. If carry-out bits 31 and 30 differ, a two's complement overflow exception is raised and

destination register rd is not modified.

Operation :

T: GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions :

Overflow

Architecture

103

ADDI Add Immediate ADDI

31 26 25 21 20 16 15 0

ADDI

001000
rs rt immediate

6 5 5 16

Format :

ADDI rt, rs, immediate

Description :

Sign-extends a 16-bit immediate value, adds it to the contents of general-purpose register rs and puts

the result in general-purpose register rt. If carry-out bits 31 and 30 differ, a two's complement

overflow exception is raised and destination register rt is not modified.

Operation :

T: GPR[rt] ← GPR[rs] + (immediate15)16 || immediate15..0

Exceptions :

Overflow

Architecture

104

ADDIU Add Immediate Unsigned ADDIU

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Format :

ADDIU rt, rs, immediate

Description :

Sign extends a 16-bit immediate value, adds it to the contents of general-purpose register rs and puts

the result in general-purpose register rt. The only difference from ADDI is that ADDIU cannot

cause an overflow exception.

Operation :

T: GPR[rt] ← GPR[rs] + (immediate15)16 || immediate15..0

Exceptions :

None

Architecture

105

ADDU Add Unsigned ADDU

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

ADDU

100001

6 5 5 5 5 6

Format :

ADDU rd, rs, rt

Description :

Adds the contents of general-purpose registers rs and rt and puts the result in general-purpose

register rd. The only difference from ADD is that ADDU cannot cause an overflow exception.

Operation :

T: GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions :

None

Architecture

106

AND And AND

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

AND

100100

6 5 5 5 5 6

Format :

AND rd, rs, rt

Description :

Bitwise ANDs the contents of general-purpose registers rs and rt and puts the result in general-

purpose register rd.

Operation :

T: GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions :

None

Architecture

107

ANDI And Immediate ANDI

31 26 25 21 20 16 15 0

ANDI

001100
rs rt immediate

6 5 5 16

Format :

ANDI rt, rs, immediate

Description :

Zero-extends a 16-bit immediate value, bitwise logical ANDs it with the contents of general-purpose

register rs and puts the result in general-purpose register rt.

Operation :

T: GPR[rt] ← 016 || (immediate and GPR[rs]15..0)

Exceptions :

None

Architecture

108

BCzF Branch On Coprocessor z False BCzF

31 26 25 21 20 16 15 0

COPz

0100xx*

BC

01000

BCF

00000
offset

6 5 5 16

Format :

BCzF offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the coprocessor z

condition (CPCOND) sampled during execution of the immediately preceding instruction is false,

the program branches to the target address after a one-cycle delay.

Operation :

T − 1:
T:
T + 1:

condition ← not COC[z]
target ← (offset15)14 || offset || 02

if condition then
PC ← PC + target

endif

*Refer also to the table on the following page (Operation Code Bit Encoding) or to the section

entitled “Bit Encoding of CPU Instruction Opcodes” at the end of this appendix.

Architecture

109

BCzF Branch On Coprocessor z False (cont.) BCzF

Exceptions :

Coprocessor Unusable exception

Operation Code Bit Encoding :

BCzF Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC0F 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1F 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC2F 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC3F 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0

branch conditionBC sub-opcodecoprocessor unit no.opcode

Architecture

110

BCzFL Branch On Coprocessor z False Likely BCzFL

31 26 25 21 20 16 15 0

COPz

0100xx*

BC

01000

BCFL

00010
offset

6 5 5 16

Format :

BCzFL offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the coprocessor z

condition (CPCOND) sampled during execution of the immediately preceding instruction is false,

the program branches to the target address after a one-cycle delay. If the condition is true, the

instruction in the delay slot is treated as a NOP.

*Refer also to the table on the following page (Operation Code Bit Encoding) or to the section

entitled “Bit Encoding of CPU Instruction Opcodes” at the end of this appendix.

Architecture

111

BCzFL Branch On Coprocessor z False Likely (cont.) BCzFL

Operation :

T − 1:
T:
T + 1:

condition ← not COC[z]
target ← (offset15)14 || offset || 02

if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

Exceptions :

Coprocessor Unusable exception

Operation Code Bit Encoding :

BCzFL Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC0FL 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1FL 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC2FL 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC3FL 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0

branch conditionBC sub-opcodecoprocessor unit no.opcode

Architecture

112

BCzT Branch On Coprocessor z True BCzT

31 26 25 21 20 16 15 0

COPz

0100xx*

BC

01000

BCT

00001
offset

6 5 5 16

Format :

BCzT offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the coprocessor z

condition (CPCOND) sampled during execution of the immediately preceding instruction is true, the

program branches to the target address after a one-cycle delay.

Operation :

T − 1:
T:
T + 1:

condition ← COC[z]
target ← (offset15)14 || offset || 02

if condition then
PC ← PC + target

endif

*Refer also to the table on the following page (Operation Code Bit Encoding) or to the section

entitled “Bit Encoding of CPU Instruction Opcodes” at the end of this appendix.

Architecture

113

BCzT Branch On Coprocessor z True (cont.) BCzT

Exceptions :

Coprocessor Unusable exception

Operation Code Bit Encoding :

BCzT Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC0T 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1T 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC2T 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC3T 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

branch conditionBC sub-opcodecoprocessor unit no.opcode

Architecture

114

BCzTL Branch On Coprocessor z True Likely BCzTL

31 26 25 21 20 16 15 0

COPz

0100xx*

BC

01000

BCTL

00011
offset

6 5 5 16

Format :

BCzTL offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the coprocessor z

condition (CPCOND) sampled during execution of the immediately preceding instruction is true, the

program branches to the target address after a one-cycle delay. If the condition is false, the

instruction in the delay slot is treated as a NOP.

Operation :

T − 1:
T:
T + 1:

condition ← COC[z]
target ← (offset15)14 || offset || 02

if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

*Refer also to the table on the following page (Operation Code Bit Encoding) or to the section

entitled “Bit Encoding of CPU Instruction Opcodes” at the end of this appendix.

Architecture

115

BCzTL Branch On Coprocessor z True Likely (cont.) BCzTL

Exceptions :

Coprocessor Unusable exception

Operation Code Bit Encoding :

BCzTL Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC0TL 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC1TL 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC2TL 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1

Bit No. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 0

BC3TL 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1

branch conditionBC sub-opcodecoprocessor unit no.opcode

Architecture

116

BEQ Branch On Equal BEQ

31 26 25 21 20 16 15 0

BEQ

000100
rs rt offset

6 5 5 16

Format :

BEQ rs, rt, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The contents of general

registers rs and rt are compared and, if equal, the program branches to the target address after a one-

cycle delay.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
if condition then

PC ← PC + target
endif

Exceptions :

None

Architecture

117

BEQL Branch On Equal Likely BEQL

31 26 25 21 20 16 15 0

BEQL

010100
rs rt offset

6 5 5 16

Format :

BEQL rs, rt, offset

Description :

Generates the branch target address by adding the address of the instruction in the delay slot to the

16-bit offset (that has been left-shifted two bits and sign-extended to 32 bits). It compares the

contents of general registers rs and rt and, if equal, the program branches to the target address after a

one-cycle delay. If the branch is not taken, the instruction in the delay slot is treated as a NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

Exceptions :

None

Architecture

118

BGEZ Branch On Greater Than Or Equal To Zero BGEZ

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZ

00001
offset

6 5 5 16

Format :

BGEZ rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the sign bit of the

value in general-purpose register rs is 0 (i.e., the value is positive or 0), the program branches to the

target address after a one-cycle delay.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

if condition then
PC ← PC + target

endif

Exceptions :

None

Architecture

119

BGEZAL Branch On Greater Than Or Equal To Zero And Link BGEZAL

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZAL

10001
offset

6 5 5 16

Format :

BGEZAL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The address of the

instruction following the instruction in the delay slot is unconditionally placed in link register r31 as

the return address from the branch. If the sign bit of the value in general-purpose register rs is 0

(i.e., the value is positive or 0), the program branches to the target address after a one-cycle delay.

Register r31 should not be used for rs, as this would prevent the instruction from restarting.

However, if this is done it is not trapped as an error.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

GPR[31] ← PC + 8
if condition then

PC ← PC + target
endif

Exceptions :

None

Architecture

120

BGEZALL Branch On Greater Than Or Equal To Zero And Link Likely BGEZALL

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZALL

10011
offset

6 5 5 16

Format :

BGEZALL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The address of the

instruction following the instruction in the delay slot is unconditionally placed in link register r31 as

the return address from the branch. If the sign bit of the value in general-purpose register rs is 0

(i.e., the value is positive or 0), the program branches to the target address after a one-cycle delay.

Register r31 should not be used for rs, as this would prevent the instruction from restarting.

However, if this is done it is not trapped as an error.

If the branch is not taken, the instruction in the delay slot is treated as a NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

GPR[31] ← PC + 8
if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

Exceptions :

None

Architecture

121

BGEZL Branch On Greater Than Or Equal To Zero Likely BGEZL

31 26 25 21 20 16 15 0

BCOND

000001
rs

BGEZL

00011
offset

6 5 5 16

Format :

BGEZL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the sign bit of the

value in general-purpose register rs is 0 (i.e., the value is positive or 0), the program branches to the

target address after a one-cycle delay. If the branch is not taken, the instruction in the delay slot is

treated as a NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

Exceptions :

None

Architecture

122

BGTZ Branch On Greater Than Zero BGTZ

31 26 25 21 20 16 15 0

BGTZ

000111
rs

0

00000
offset

6 5 5 16

Format :

BGTZ rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the value in general-

purpose register rs is positive (i.e., the sign bit of rs is 0 and the rs value is not 0), the program

branches to the target address after a one-cycle delay.

Operation :

T:

T + 1:

target ← (offset 15)14 || offset || 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)

if condition then
PC ← PC + target

endif

Exceptions :

None

Architecture

123

BGTZL Branch On Greater Than Zero Likely BGTZL

31 26 25 21 20 16 15 0

BGTZL

010111
rs

0

00000
offset

6 5 5 16

Format :

BGTZL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the value in general-

purpose register rs is positive (i.e., the sign bit of rs is 0 and the rs value is not 0), the program

branches to the target address after a one-cycle delay. If the branch is not taken, the instruction in

the delay slot is treated as a NOP.

Operation :

T:

T + 1:

target ← (offset 15)14 || offset || 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)

if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

Exceptions :

None

Architecture

124

BLEZ Branch On Less Than Or Equal To Zero BLEZ

31 26 25 21 20 16 15 0

BLEZ

000110
rs

0

00000
offset

6 5 5 16

Format :

BLEZ rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the the value in

general-purpose register rs is negative or 0 (i.e., the sign bit of rs is 1 or the rs value is 0), the

program branches to the target address after a one-cycle delay.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)

if condition then
PC ← PC + target

endif

Exceptions :

None

Architecture

125

BLEZL Branch On Less Than Or Equal To Zero Likely BLEZL

31 26 25 21 20 16 15 0

BLEZL

010110
rs

0

00000
offset

6 5 5 16

Format :

BLEZL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the value in general-

purpose register rs is negative or 0 (i.e., the sign bit of rs is 1 or the rs value is 0), the program

branches to the target address after a one-cycle delay. If the branch is not taken, the instruction in

the delay slot is treated as a NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)

if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

Exceptions :

None

Architecture

126

BLTZ Branch On Less Than Zero BLTZ

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZ

00000
offset

6 5 5 16

Format :

BLTZ rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the value in general-

purpose register rs is negative (i.e., the sign bit of rs is 1), the program branches to the target address

after a one-cycle delay.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

if condition then
PC ← PC + target

endif

Exceptions :

None

Architecture

127

BLTZAL Branch On Less Than Zero And Link BLTZAL

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZAL

10000
offset

6 5 5 16

Format :

BLTZAL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The address of the

instruction following the instruction in the delay slot is unconditionally placed in link register r31 as

the return address from the branch. If the value in general-purpose register rs is negative (i.e., the

sign bit of rs is 1), the program branches to the target address after a one-cycle delay.

Register r31 should not be used for rs, as this would prevent the instruction from restarting.

However, if this is done it is not trapped as an error.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

GPR[31] ← PC + 8
if condition then

PC ← PC + target
endif

Exceptions :

None

Architecture

128

BLTZALL Branch On Less Than Zero And Link Likely BLTZALL

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZALL

10010
offset

6 5 5 16

Format :

BLTZALL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The address of the

instruction following the instruction in the delay slot is unconditionally placed in link register r31 as

the return address from the branch. If the value in general-purpose register rs is negative (i.e., the

sign bit of rs is 1), the program branches to the target address after a one-cycle delay.

Register r31 should not be used for rs, as this would prevent the instruction from restarting.

However, if this is done it is not trapped as an error.

If the branch is not taken, the instruction in the delay slot is treated as a NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

GPR[31] ← PC + 8
if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

Exceptions :

None

Architecture

129

BLTZL Branch On Less Than Zero Likely BLTZL

31 26 25 21 20 16 15 0

BCOND

000001
rs

BLTZL

00010
offset

6 5 5 16

Format :

BLTZL rs, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). If the value in general-

purpose register rs is negative (i.e., the sign bit of rs is 1), the program branches to the target address

after a one-cycle delay. If the branch is not taken, the instruction in the delay slot is treated as a

NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

Exceptions :

None

Architecture

130

BNE Branch On Not Equal BNE

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

Format :

BNE rs, rt, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The contents of general

registers rs and rt are compared and, if not equal, the program branches to the target address after a

one-cycle delay.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
if condition then

PC ← PC + target
endif

Exceptions :

None

Architecture

131

BNEL Branch On Not Equal Likely BNEL

31 26 25 21 20 16 15 0

BNEL

010101
rs rt offset

6 5 5 16

Format :

BNEL rs, rt, offset

Description :

Generates a branch target address by adding the address of the instruction in the delay slot to the 16-

bit offset (that has been left-shifted two bits and sign-extended to 32 bits). The contents of general

registers rs and rt are compared and, if not equal, the program branches to the target address after a

one-cycle delay. If the branch is not taken, the instruction in the delay slot is treated as a NOP.

Operation :

T:

T + 1:

target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

Exceptions :

None

Architecture

132

BREAK Breakpoint BREAK

31 26 25 6 5

0

SPECIAL

000000
code BREAK

001101

6 20 6

Format :

BREAK code

Description :

Raises a Breakpoint exception, then immediately passes control to an exception handler. The code

field can be used to pass software parameters, but the only way to have the code field retrieved by

the exception handler is use the DEPC register to load the contents of the memory word containing

this instruction.

Operation :

T: BreakpointException

Exceptions :

Breakpoint exception

Architecture

133

CACHE Cache CACHE

31 26 25 21 20 16 15 0

CACHE

101111
base op offset

6 5 5 16

Format :

CACHE op, offset(base)

Description :

Generates a virtual address by sign-extending the 16-bit offset and adding the result to the contents

of register base. The virtual address is translated to a physical address, and a 5-bit sub-opcode

designates the cache operation to be performed at that address.

If CP0 is unusable (in user mode), the Status register CP0 enable bit is cleared and a Coprocessor

Unusable exception is raised. The behavior of this instruction for operation and cache

combinations other than those listed in the table below, and when used with an uncached address, is

undefined.

Cache index operations (shown for bits 20 through 18 below) designate a cache block using part of

the virtual address.

For a directly mapped cache of 2CACHESIZE bytes with 2BLOCKSIZE bytes per tag, a block is designated

as vAddrCACHESIZE-1 .. BLOCKSIZE. In the case of a 2WAYSIZE-way set-associative cache of 2CACHESIZE

bytes with 2BLOCKSIZE bytes per tag, a set is designated as vAddrCACHESIZE-
WAYSIZE-1 .. BLOCKSIZE.

A Cache hit operation (shown for bits 20 through 18 below) accesses the designated cache as an

ordinary data reference. If a cache block contains valid data for the generated physical address, it is a

hit and the designated operation is performed. In case of a miss, that is, if the cache block is invalid

or contains a different address, no operation is performed.

Bits 17..16 of the Cache instruction select the target cache as follows.

Bit# Cache Cache

17 16 ID Name

0 0 I Instruction

0 1 D Data

1 0 - (reserved)

1 1 - (reserved)

Architecture

134

CACHE Cache (cont.) CACHE

Bits 20..18 of the Cache instruction select the operation to be performed as follows.

Bit# Cache Operation Description

20 19 18 ID Name

0 0 0 I IndexInvalidate Sets the cache state of the cache block to
Invalid. This instruction is valid only
when the instruction cache is invalid
(Config register ICE bit is 0).

0 0 1 D IndexLRUBitClear Clears the LRU bit of the cache at the
designated index.

0 1 0 D IndexLockBitClear Clears the Lock bit of the cache at the
designated index.

1 0 0 D HitInvalidate If a cache block contains the designated
address, sets that cache block to Invalid.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]
(pAddr, uncached ← AddressTranslation (vAddr, DATA)

Exceptions :

Coprocessor Unusable exception

Architecture

135

CFCz Move Control From Coprocessor CFCz

31 26 25 21 20 16 15 11 10

0

COPz

0100xx*

CF

00010
rt rd

0

000 0000 0000

6 5 5 5 11

Format :

CFCz rt, rd

Description :

Loads the contents of coprocessor z's control register rd into general-purpose register rt. This

instruction is not valid when issued for CP0.

Operation :

T: GPR[rt] ← CCR[z, rd]

Exceptions :

Coprocessor Unusable exception

* Operation Code Bit Encoding :

CFCz 02122232425262728293031Bit No.

CFC1 0 0100100010

Bit No.

CFC2 0010010

025262728293031

Bit No.

CFC3 0110010

025262728293031

coprocessor sub-opcode

coprocessor unit no.

opcode

0100

0100

21222324

21222324

Architecture

136

COPz Coprocessor Operation COPz

31 26 25 24 0

COPz

0100xx*

CO

1
cofun

6 1 25

Format :

COPz cofun

Description :

Performs the operation designated by cofun in coprocessor z. This operation may involve selecting

or accessing internal coprocessor registers or changing the status of the coprocessor condition signal

(CPCOND), but will not modify internal states of the processor or cache/memory system.

Operation :

T: CoprocessorOperation (z, cofun)

Exceptions :

Coprocessor Unusable exception

* Operation Code Bit Encoding :

COPz

1000010

252627282930Bit No.

COP0

31

25262728293031Bit No.

COP1 1100010

Bit No.

COP2 1010010

25262728293031

Bit No.

COP3 1110010

25262728293031

coprocessor sub-opcode (see to Figure A-2 at end of appendix)

coprocessor unit no.

opcode

Architecture

137

CTCz Move Control To Coprocessor CTCz

31 26 25 21 20 16 15 11 10

0

COPz

0100xx*

CT

00110
rt rd

0

000 0000 0000

6 5 5 5 11

Format :

CTCz rt, rd

Description :

Loads the contents of general register rt into control register rd of coprocessor z. This instruction is

not valid when issued for CP0.

Operation :

T: CCR[z, rd] ← GPR[rt]

Exceptions :

Coprocessor Unusable exception

*Refer to the section entitied“Bit Encoding of CPU Instruction Opcodes”at the end of this appendix.

Architecture

138

DERET Debug Exception Return DERET

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Format :

DERET

Description :

Executes a return from a self-debug interrupt or exception. This instruction requires a branch delay

slot like that of the branch or jump instructions, and executes with a delay of one instruction cycle.

The DERET instruction itself cannot be put in the delay slot.

The return address stored in the DEPC register is copied to the PC, and processing returns to the

original program.

Note: If a MTC0 instruction was used to set the return address in the DEPC register, a minimum of

two instructions must be executed before executing DERET.

Operation :

T:
T + 1:

temp ← DEPC
PC ← temp
Debug30 ← 0

Exceptions :

Coprocessor Unusable exception

Architecture

139

DIV Divide DIV

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000

rs rt 0

00 0000 0000

DIV

011010

6 5 5 10 6

Format :

DIV rs, rt

Description :

Divides the contents of general register rs by the contents of general register rt, treating both

operands as two's complement integers. An overflow exception is never raised. If the divisor is

zero, the result is undefined.

Ordinarily, instructions are placed after this instruction to check for zero division and overflow.

The quotient word is loaded into special register LO, and the remainder word into special register HI.

When an attempt is made to read the division result using MFHI, MFLO, MADD or MADDU before

the divide operation is completed, the read operation is delayed by an interlock.

Divide operations are executed in an independent ALU and can be carried out in parallel with the

execution of other instructions. For this reason, the ALU can continue executing instructions even

during a cache miss or other delay cycle in which ordinary instructions cannot be processed.

If either of the two preceding instructions is MFHI, MFLO, MADD or MADDU, the results of those

instructions are undefined. For the DIV operation to be carried out correctly, reads of HI or LO

must be separated from writes by two or more instructions.

Operation :

T − 2:

T − 1:

T:

LO ← undefined
HI ← undefined
LO ← undefined
HI ← undefined
LO ← GPR[rs] div GPR[rt]
HI ← GPR[rs] mod GPR[rt]

Exceptions :

None

Architecture

140

DIVU Divide Unsigned DIVU

31 26 25 21 20 16 15 6 5 0

SPECIAL

000000
rs

rt

00000

0

00 0000 0000

DIVU

011011

6 5 5 10 6

Format :

DIVU rs, rt

Description :

This instruction divides the contents of general register rs by the contents of general register rt,

treating both operands as two's complement integers. An integer overflow exception is never

raised. If the divisor is zero, the result is undefined.

Ordinarily, an instruction is placed after this instruction to check for zero division.

When an attempt is made to read the division result using MFHI, MFLO, MADD or MADDU before

the divide operation is completed, the read operation is delayed by an interlock.

Divide operations are executed in an independent ALU and can be carried out in parallel with the

execution of other instructions. For this reason, the ALU can continue executing instructions even

during a cache miss or other delay cycle in which ordinary instructions cannot be processed.

Upon completion of the operation, the quotient word is loaded into special register LO, and the

remainder word into special register HI.

If either of the two preceding instructions is MFHI, MFLO, MADD or MADDU, the results of those

instructions are undefined. For the DIVU operation to be carried out correctly, reads of HI or LO

must be separated from writes by two or more instructions.

Operation :

T − 2:

T − 1:

T:

LO ← undefined
HI ← undefined
LO ← undefined
HI ← undefined
LO ← (0 || GPR[rs]) div (0 || GPR[rt])
HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

Exceptions :

None

Architecture

141

J Jump J

31 26 25 0

J

000010
target

6 26

Format :

J target

Description :

Generates a jump target address by left-shifting the 26-bit target by two bits and combining the result

with the high-order 4 bits of the address of the instruction in the delay slot. The program jumps

unconditionally to this address after a delay of one instruction cycle.

Operation :

T:
T + 1:

temp ← target
PC ← PC31..28 || temp ||02

Exceptions :

None

Architecture

142

JAL Jump And Link JAL

31 26 25 0

JAL

000011
target

6 26

Format :

JAL target

Description :

Generates a jump target address by left-shifting the 26-bit target by 2 bits and combining the result

with the high-order 4 bits of the address of the instruction in the delay slot. The program jumps

unconditionally to this address after a delay of one instruction cycle. The address of the instruction

after the delay slot is placed in link register r31 as the return address from the jump.

Operation :

T:

T + 1:

temp ← target
GPR[31] ← PC + 8
PC ← PC31..28 || temp ||02

Exceptions :

None

Architecture

143

JALR Jump And Link Register JALR

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs

0

00000
rd

0

00000

JALR

001001

6 5 5 5 5 6

Format :

JALR rs

JALR rd, rs

Description :

Causes the program to jump unconditionally to the address in general register rs after a delay of one

instruction cycle. The address of the instruction following the delay slot is put in general register rd

as the return address from the jump. If rd is omitted from the assembly language instruction, r31 is

used as the default value.

Register specifiers rs and rd must not be equal, since such an instruction would not have the same

result if re-executed. This error is not trapped, however, the result is undefined.

Since instructions must be aligned on a word boundary, the two low-order bits of the value in target

register rs must be 00. If not, an Address Error exception will be raised when the target instruction

is fetched.

Operation :

T:

T + 1:

temp ← GPR[rs]
GPR[rd] ← PC + 8
PC ← temp

Exceptions :

None

Architecture

144

JR Jump Register JR

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

JR

001000

6 5 15 6

Format :

JR rs

Description :

Causes the program to jump unconditionally to the address in general register rs after a delay of one

instruction cycle.

Since instructions must be aligned on a word boundary, the two low-order bits of target register rs

must be 00. If not, an Address Error exception will be raised when the target instruction is fetched.

Operation :

T:
T + 1:

temp ← GPR[rs]
PC ← temp

Exceptions :

None

Architecture

145

LB Load Byte LB

31 26 25 21 20 16 15 0

LB

100000
base rt

offset

6 5 5 16

Format :

LB rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset and adding it to the contents

of general-purpose register base. It then sign-extends the byte at the memory location pointed to by

the effective address and loads the result into general-purpose register rt.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ←(mem7+8*byte)24 || mem7+8byte..8*byte

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

146

LBU Load Byte Unsigned LBU

31 26 25 21 20 16 15 0

LBU

100100
base rt offset

6 5 5 16

Format :

LBU rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset and adding it to the contents

of general-purpose register base. It then zero-extends the byte at the memory location pointed to by

the effective address and loads the result into general-purpose register rt.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ←024 || mem7+8*byte..8*byte

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

147

LH Load Halfword LH

31 26 25 21 20 16 15 0

LH

100001
base rt offset

6 5 5 16

Format :

LH rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset and adding it to the contents

of general-purpose register base. It then sign-extends the halfword at the memory location pointed

to by the effective address and loads the result into general-purpose register rt.

If the effective address is not aligned on a halfword boundary, i.e., if the least significant bit of

the effective address is not 0, an Address Error exception is raised.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor (ReverseEndian || 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ←(mem15+8*byte)16 || mem15+8*byte..8*byte

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

148

LHU Load Halfword Unsigned LHU

31 26 25 21 20 16 15 0

LHU

100101
base rt offset

6 5 5 16

Format :

LHU rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset and adding it to the contents

of general-purpose register base. It then zero-extends the halfword at the memory location pointed

to by the effective address and loads the result into general-purpose register rt.

If the effective address is not aligned on a halfword boundary, i.e., if the least significant bit of the

effective address is not 0, an Address Error exception is raised.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor (ReverseEndian || 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU || 0)
GPR[rt] ← 0 16 || mem15+8*byte..8*byte

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

149

LUI Load Upper Immediate LUI

31 26 25 21 20 16 15 0

LUI

00111

0

00000
rt immediate

6 5 5 16

Format :

LUI rt, immediate

Description :

Left-shifts 16-bit immediate by the 16 bits, zero-fills the low-order 16 bits of the word, and puts the

result in general register rt.

Operation :

T: GPR[rt] ← immediate || 016

Exceptions :

None

Architecture

150

LW Load Word LW

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Format :

LW rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset and adding it to the contents

of general-purpose register base. It then loads the word at the memory location pointed to by the

effective address into general-purpose register rt.

If the effective address is not aligned on a word boundary, i.e., if the low-order 2 bits of the

effective address are not 00, an Address Error exception is raised.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
GPR[rt] ←mem

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

151

LWL Load Word Left LWL

31 26 25 21 20 16 15 0

LWL

100010
base rt offset

6 5 5 16

Format :

LWL rt, offset(base)

Description :

Used together with LWR to load four consecutive bytes to a register when the bytes cross a word

boundary. LWL loads the left part of the register from the appropriate part of the high-order word;

LWR loads the right part of the register from the appropriate part of the low-order word.

This instruction generates a 32-bit effective address that can point to any byte, by sign-extending the

16-bit offset and adding it to the contents of general-purpose register base. Only bytes from the

word in memory containing the designated starting byte are read. Depending on the starting byte,

from one to four bytes are loaded.

The concept is illustrated below. This instruction (LWL) first loads the designated memory byte

into the high-order (left-most) byte of the register; it then continues loading bytes from memory into

the register, proceeding toward the low-order byte of the memory word and the low-order byte of the

register, until it reaches the low-order byte of the memory word. The least-significant (right-most)

byte of the register is not changed.

10 32

54 76

Memory
(big endian)

Address 4

Address 0

Register

$24A B DC
Before
loading

$24D21 3
After
loading

LWL $24,1($0)

Architecture

152

LWL Load Word Left (cont.) LWL

It is alright to put a load instruction that uses the same rt as the LWL instruction immediately before

LWL (or LWR). The contents of general-purpose register rt are bypassed internally in the

processor, eliminating the need for a NOP between the two instructions.

No Address Error instruction is raised due to misalignment.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-31..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← mem7+8*byte..0 || GPR[rt]23-8*byte..0

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

153

LWR Load Word Right LWR

31 26 25 21 20 16 15 0

LWR

100110
base rt offset

6 5 5 16

Format :

LWR rt, offset(base)

Description :

Used together with LWL to load four consecutive bytes to a register when the bytes cross a word

boundary. LWR loads the right part of the register from the appropriate part of the low-order word;

LWL loads the left part of the register from the appropriate part of the high-order word.

This instruction generates a 32-bit effective address that can point to any byte, by sign-extending the

16-bit offset and adding it to the contents of general-purpose register base. Only bytes from the

word in memory containing the designated starting byte are read. Depending on the starting byte,

from one to four bytes are loaded.

The concept is illustrated below. This instruction (LWR) first loads the designated memory byte

into the low-order (right-most) byte of the register; it then continues loading bytes from memory into

the register, proceeding toward the high-order byte of the memory word and the high-order byte of

the register, until it reaches the high-order byte of the memory word. The most-significant (left-

most) byte of the register is not changed.

Memory

(big endian)

Before
loading

LWR $24,4($0)

After
loading

Address 4 4 5 6 7

Address 0 0 1 2 3

Register

A B C D $24

A B C 4 $24

Architecture

154

LWR Load Word Right (cont.) LWR

It is alright to put a load instruction that uses the same rt as the LWR instruction immediately before

LWR. The contents of general-purpose register rt are bypassed internally in the processor,

eliminating the need for a NOP between the two instructions.

No Address Error instruction is raised due to misalignment.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
if BigEndianMem = 1 then

pAddr ← pAddr31..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

mem ← LoadMemory (uncached, WORD-byte, pAddr, vAddr, DATA)
GPR[rt] ← mem31..32-8*byte..0 || GPR[rt]31-8*byte..0

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

Address Error exception

Architecture

155

MADD Multiply/Add MADD

31 26 25 21 20 16 15 11 10 6 5 0

MADD / MADDU

011100
rs rt rd

0

00000

MADD

000000

6 5 5 5 5 6

Format :

MADD rs, rt

MADD rd, rs, rt

Description :

Multiplies the contents of general registers rs and rt, treating both values as two's complement, and

puts the double-word result in special registers HI and LO. An overflow exception is never raised.

The low-order word of the multiplication result is put in general register rd and in special register

LO, whereas the high-order word of the result is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value. To guarantee correct operation

even if an interrupt occurs, neither of the two instructions following MADD should be DIV or DIVU

instructions which modify the HI and LO register contents.

Operation :

T: t ← (HI || LO) + GPR[rs]*GPR[rt]
LO ← t31..0

HI ← t63..32

GPR[rd] ← t31..0

Exceptions :

None

Architecture

156

MADDU Multiply/Add Unsigned MADDU

31 26 25 21 20 16 15 11 10 6 5 0

MADD/MADDU

011100
rs rt rd

0

00000

MADDU

000001

6 5 5 5 5 6

Format :

MADDU rs, rt

MADDU rd, rs, rt

Description :

Multiplies the contents of general registers rs and rt, treating both values as unsigned , and puts the

double-word result in special registers HI and LO. An overflow exception is never raised.

The low-order word of the multiplication result is put in general register rd and in special register

LO, whereas the high-order word of the result is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value. To guarantee correct operation

even if an interrupt occurs, neither of the two instructions following MADDU should be DIV or

DIVU instructions which the HI and LO register contents.

Operation :

T: t ← (HI || LO) + (0 || GPR[rs])*(0 || GPR[rt])
LO ← t31..2

HI ← t63..32

GPR[rd] ← t31..0

Exceptions :

None

Architecture

157

MFC0 Move From System Control Coprocessor MFC0

31 26 25 21 20 16 15 11 10 0

COP0

010000

MF

00000
rt rd

0

000 0000 0000

6 5 5 5 11

Format :

MFC0 rt, rd

Description :

Loads the contents of coprocessor CP0 register rd into general-purpose register rt.

Operation :

T: GPR[rt] ← CPR[0, rd]

Exceptions :

Coprocessor Unusable exception

Architecture

158

MFCz Move From Coprocessor MFCz

31 26 25 21 20 16 15 11 10 0

COPz

0100xx*

MF

00000
rt rd

0

000 0000 0000

6 5 5 5 11

Format :

MFCz rt, rd

Description :

Loads the contents of coprocessor z register rd into general-purpose register rt.

Operation :

T: GPR[rt] ← CPR[z, rd]

Exceptions :

Coprocessor Unusable exception

∗ Refer also to the table on the following page (Operation Code Bit Encoding) or to the section

entitled “Bit Encoding of CPU Instruction Opcodes” at the end of this appendix.

Architecture

159

MFCz Move From Coprocessor (cont.) MFCz

*Operation Code Bit Encoding :

MFCz
Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

MFC0 0 1 0 0 0 0 0 0 0 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

MFC1 0 1 0 0 0 1 0 0 0 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

MFC2 0 1 0 0 1 0 0 0 0 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

MFC3 0 1 0 0 1 1 0 0 0 0 0

opcode coprocessor sub-opcode

coprocessor unit no.

Architecture

160

MFHI Move From HI MFHI

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000

6 10 5 5 6

Format :

MFHI rd

Description :

Loads the contents of special register HI into general-purpose register rd.

To guarantee correct operation even if an interrupt occurs, neither of the two instructions following

MFHI should be DIV or DIVU instructions which modify the HI register contents.

Operation :

T: GPR[rd] ← HI

Exceptions :

None

Architecture

161

MFLO Move From LO MFLO

31 26 25 16 15 11 10 6 5 0

SPECIAL

000000

0

00 0000 0000

rd 0

00000

MFLO

010010

6 10 5 5 6

Format :

MFLO rd

Description :

Loads the contents of special register LO into general-purpose register rd.

To guarantee correct operation even if an interrupt occurs, neither of the two instructions following

MFLO should be DIV or DIVU instructions which the LO register contents.

Operation :

T: GPR[rd] ← LO

Exceptions :

None

Architecture

162

MTC0 Move To System Control Coprocessor MTC0

31 26 25 21 20 16 15 11 10 0

COP0

010000

MT

00100
rt rd

0

000 0000 0000

6 5 5 5 11

Format :

MTC0 rt, rd

Description :

Loads the contents of general-purpose register rt into CP0 coprocessor register rd.

Executing this instruction may in some cases modify the state of the virtual address translation

system, therefore the behavior of a load instruction, store instruction or TLB operation placed

immediately before or after the MTC0 instruction cannot be defined.

Operation :

T: CPR[0, rd] ← GPR[rt]

Exceptions :

Coprocessor Unusable exception

Architecture

163

MTCz Move To Coprocessor MTCz

31 26 25 21 20 16 15 11 10 0

COPz

0100xx*

MT

00100
rt rd

0

000 0000 0000

6 5 5 5 11

Format :

MTCz rt, rd

Description :

Loads the contents of general-purpose register rt into coprocessor z register rd.

Operation :

T: CPR[z, rd] ← GPR[rt]

Exceptions :

Coprocessor Unusable exception

* Operation Code Bit Encoding :

MTCz Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

COP0 0 1 0 0 0 0 0 0 1 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

COP1 0 1 0 0 0 1 0 0 1 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

COP2 0 1 0 0 1 0 0 0 1 0 0

Bit No. 31 30 29 28 27 26 25 24 23 22 21 0

COP3 0 1 0 0 1 1 0 0 1 0 0

coprocessor sub-opcodecoprocessor unit no.opcode

Architecture

164

MTHI Move To HI MTHI

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001

6 5 15 6

Format :

MTHI rs

Description :

Loads the contents of general-purpose register rs into special register HI.

If executed after a DIV or DIVU instruction or before a MFLO, MFHI, MTLO or MTHI instruction,

the contents of special register LO will be undefined.

Operation :

T: HI ← GPR[rs]

Exceptions :

None

Architecture

165

MTLO Move To LO MTLO

31 26 25 21 20 6 5 0

SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011

6 5 15 6

Format :

MTLO rs

Description :

Loads the contents of general-purpose register rs into special register LO.

If executed after a DIV or DIVU instruction or before a MFLO, MFHI, MTLO or MTHI

instruction, the contents of special register HI will be undefined.

Operation :

T: LO ← GPR[rs]

Exceptions :

None

Architecture

166

MULT Multiply MULT

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MULT

011000

6 5 5 5 5 6

Format :

MULT rs, rt

MULT rd, rs, rt

Description :

Multiplies the contents of general-purpose register rs by the contents of general register rt, treating

both register values as 32-bit two's complement values. This instruction cannot raise an integer

overflow exception.

The low-order word of the multiplication result is put in general register rd and in special register

LO, whereas the high-order word of the result is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value.

Operation :

T: t ← GPR[rs]*GPR[rt]
LO ← t31..0

HI ← t63..32

GPR[rd] ← t31..0

Exceptions :

None

Architecture

167

MULTU Multiply Unsigned MULTU

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

MULTU

011001

6 5 5 5 5 6

Format :

MULTU rs, rt

MULTU rd, rs, rt

Description :

Multiplies the contents of general-purpose register rs by the contents of general register rt, treating

both register values as 32-bit unsigned values. This instruction cannot raise an integer overflow

exception.

The low-order word of the multiplication result is put in general register rd and in special register

LO, whereas the high-order word of the result is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value.

Operation :

T: t ← (0||GPR[rs])*(0||GPR[rt])
LO ← t31..0

HI ← t63..32

GPR[rd] ← t31..0

Exceptions :

None

Architecture

168

NOR Nor NOR

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

NOR

100111

6 5 5 5 5 6

Format :

NOR rd, rs, rt

Description :

Bitwise NORs the contents of general register rs with the contents of general register rt, and loads the

result in general register rd.

Operation :

T: GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions :

None

Architecture

169

OR Or OR

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

OR

100101

6 5 5 5 5 6

Format :

OR rd, rs, rt

Description :

Bitwise ORs the contents of general-purpose register rs with the contents of general-purpose register

rt, and loads the result in general-purpose register rd.

Operation :

T: GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions :

None

Architecture

170

ORI Or Immediate ORI

31 26 25 21 20 16 15 0

ORI

001101
rs rt immediate

6 5 5 16

Format :

ORI rt, rs, immediate

Description :

Zero-extends the 16-bit immediate value, bitwise ORs the result with the contents of general-purpose

register rs, and loads the result in general-purpose register rt.

Operation :

T: GPR[rt] ← GPR[rs]31..16 || (immediate or GPR[rs]15..0)

Exceptions :

None

Architecture

171

RFE Restore From Exception RFE

31 26 25 24 6 5 0

COP0

010000

CO

1

0

000 0000 0000 0000 0000

RFE

010000

6 1 19 6

Format :

RFE

Description :

Copies the Status register bits for previous interrupt mask mode and previous kernel/user mode

(IEp and KUp) to the current mode bits (IEc and KUc), and copies the old mode bits (IEo and KUo)

to the previous mode bits (IEp and KUp). The old mode bits remain unchanged.

Similarly, it copies the Cache register bits for previous data cache auto-lock mode and previous

instruction cache auto-lock mode (DALp and IALp) to the current mode bits (DALc and IALc), and

copies the old mode bits (DALo and IALo) to the previous mode bits (DALp and IALp). The old

mode bits remain unchanged.

Normally an RFE instruction is placed in the delay slot after a JR instruction in order to restore the

PC.

Operation :

T: Status ← Status31..4 || Status5..2

Cache ← 08 || Cache13..12 || Cache13..0
 || 08

Exceptions :

Coprocessor Unusable exception

Architecture

172

SB Store Byte SB

31 26 25 21 20 16 15 0

SB

101000
base rt offset

6 5 5 16

Format :

SB rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset and adding it to the contents

of general-purpose register base. It then stores the least significant byte of register rt at the resulting

effective address.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
byte ← vAddr1..0 xor BigEndianCPU2

data ←GPR[rt]31-8*byte..0 || 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

TLB Modified exception (reserved)

Address Error exception

Architecture

173

SDBBP Software Debug Breakpoint SDBBP

31 26 25 6 5 0

SPECIAL

000000
code

SDBBP

001110

6 20 6

Format :

SDBBP code

Description :

Raises a Debug Breakpoint exception, passing control to an exception handler.

The code field can be used for passing information to the exception handler, but the only way to have

the code field retrieved by the exception handler is to load the contents of the memory word

containing this instruction using the DEPC register.

Operation :

T: Software DebugBreakpointException

Exceptions :

Debug Breakpoint exception

Architecture

174

SH Store Halfword SH

31 26 25 21 20 16 15 0

SH

101001
base rt offset

6 5 5 16

Format :

SH rt, offset(base)

Description :

Generates an unsigned 32-bit effective address by sign-extending the 16-bit offset and adding it to

the contents of general-purpose register base. It then stores the least significant halfword of register

rt at the resulting effective address. If the effective address is not aligned on a halfword boundary,

that is if the least significant bit of the effective address is not 0, an Address Error exception is

raised.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 ||(pAddr1..0

 xor (ReverseEndian || 0))
byte ← vAddr1..0 xor (BigEndianCPU || 0)
data ←GPR[rt]31-8*byte..0 || 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

TLB Modified exception (reserved)

Address Error exception

Architecture

175

SLL Shift Left Logical SLL

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SLL

000000

6 5 5 5 5 6

Format :

SLL rd, rt, sa

Description :

Left-shifts the contents of general-purpose register rt by sa bits, zero-fills the low-order bits, and puts

the result in register rd.

Operation :

T: GPR[rd] ← GPR[rt]31-sa..0 || 0 sa

Exceptions :

None

Architecture

176

SLLV Shift Left Logical Variable SLLV

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

0 0000

SLLV

000100

6 5 5 5 5 6

Format :

SLLV rd, rt, rs

Description :

Left-shifts the contents of general-purpose register rt (by the number of bits designated in the low-

order five bits of general-purpose register rs), zero-fills the low-order bits and puts the 32-bit result

in register rd.

Operation :

T: s ← GPR[rs]4..0

GPR[rd] ← GPR[rt](31-s)..0 || 0s

Exceptions :

None

Architecture

177

SLT Set On Less Than SLT

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLT

101010

6 5 5 5 5 6

Format :

SLT rd, rs, rt

Description :

Compares the contents of general-purpose registers rt and rs as 32-bit signed integers. A 1, if rs is

less than rt, or a 0, otherwise, is placed in general-purpose register rd as the result of the comparison.

No overflow exception is raised. The comparison is valid even if the subtraction used in making

the comparison overflows.

Operation :

T: if GPR[rs]< GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

Exceptions :

None

Architecture

178

SLTI Set On Less Than Immediate SLTI

31 26 25 21 20 16 15 0

SLTI

001010
rs rt immediate

6 5 5 16

Format :

SLTI rt, rs, immediate

Description :

Sign-extends the 16-bit immediate value and compares the result with the contents of general-

purpose register rs, treating both values as 32-bit signed integers. A 1, if rs is less than the sigh-

extended immediate value, or a 0, otherwise, is placed in general-purpose register rt as the result of

the comparison.

No overflow exception is raised. The comparison is valid even if the subtraction used in making

the comparison overflows.

Operation :

T: if GPR[rs]< (immediate15)16 || immediate15..0 then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

Exceptions :

None

Architecture

179

SLTIU Set On Less Than Immediate Unsigned SLTIU

31 26 25 21 20 16 15 0

SLTIU

001011
rs rt immediate

6 5 5 16

Format :

SLTIU rt, rs, immediate

Description :

Sign-extends the 16-bit immediate value and compares the result with the contents of general-

purpose register rs, treating both values as 32-bit unsigned integers. A 1, if rs is less than the sigh-

extended immediate value, or a 0, otherwise, is placed in general-purpose register rt as result of the

comparison.

No overflow exception is raised. The comparison is valid even if the subtraction used in making

the comparison overflows.

Operation :

T: if (0 || GPR[rs]) < (0 || (immediate15)16 ||immediate15..0) then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

Exceptions :

None

Architecture

180

SLTU Set On Less Than Unsigned SLTU

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SLTU

101011

6 5 5 5 5 6

Format :

SLTU rd, rs, rt

Description :

Compares the contents of general registers rt and rs as 32-bit unsigned integers. A 1, if rs is less

than rt, or a 0, otherwise, is placed in general-purpose register rd as the result of the comparison.

No overflow exception is raised. The comparison is valid even if the subtraction used in making

the comparison overflows.

Operation :

T: if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

Exceptions :

None

Architecture

181

SRA Shift Right Arithmetic SRA

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRA

000011

6 5 5 5 5 6

Format :

SRA rd, rt, sa

Description :

Right-shifts the contents of general-purpose register rt by sa bits, sign-extends the high-order bits,

and puts the result in register rd.

Operation :

T: GPR[rd] ← (GPR[rt]31)sa || GPR[rt]31..sa

Exceptions :

None

Architecture

182

SRAV Shift Right Arithmetic Variable SRAV

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRAV

000111

6 5 5 5 5 6

Format :

SRAV rd, rt, rs

Description :

Right-shifts the contents of general-purpose register rt (by the number of bits designated in the low-

order five bits of general-purpose register rs), sign-extends the high-order bits, and puts the result in

register rd.

Operation :

T: s ← GPR[rs]4..0

GPR[rd] ← (GPR[rt]31)s|| GPR[rt]31..s

Exceptions :

None

Architecture

183

SRL Shift Right Logical SRL

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

0

00000
rt rd sa

SRL

000010

6 5 5 5 5 6

Format :

SRL rd, rt, sa

Description :

Right-shifts the contents of general-purpose register rt by sa bits, zero-fills the high-order bits, and

puts the result in register rd.

Operation :

T: GPR[rd] ← 0sa || GPR[rt]31..sa

Exceptions :

None

Architecture

184

SRLV Shift Right Logical Variable SRLV

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SRLV

000110

6 5 5 5 5 6

Format :

SRLV rd, rt, rs

Description :

Right-shifts the contents of general register rt (by the number of bits designated in the low-order five

bits of general register rs), zero-fills the high-order bits, and puts the result in register rd.

Operation :

T: s ← GPR[rs]4..0

GPR[rd] ← 0s || GPR[rt]31..s

Exceptions :

None

Architecture

185

SUB Subtract SUB

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUB

100010

6 5 5 5 5 6

Format :

SUB rd, rs, rt

Description :

Subtracts the contents of general-purpose register rt from general-purpose register rs and puts the

result in general-purpose register rd. If carry-out bits 31 and 30 differ, a two's complement

overflow exception is raised and destination register rd is not modified.

Operation :

T: GPR[rd] ← GPR[rs] - GPR[rt]

Exceptions :

Overflow exception

Architecture

186

SUBU Subtract Unsigned SUBU

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000
rs rt rd

0

00000

SUBU

100011

6 5 5 5 5 6

Format :

SUBU rd, rs, rt

Description :

Subtracts the contents of general-purpose register rt from general-purpose register rs and puts the

result in general-purpose register rd. The only difference from SUB is that SUBU cannot cause an

overflow exception.

Operation :

T: GPR[rd] ← GPR[rs] - GPR[rt]

Exceptions :

None

Architecture

187

SW Store Word SW

31 26 25 21 20 16 15 0

SW

101011
base rt offset

6 5 5 16

Format :

SW rt, offset(base)

Description :

Generates a 32-bit effective address by sign-extending the 16-bit offset value and adding it to the

contents of general-purpose register base. It then stores the contents of register rt at the resulting

effective address.

If the effective address is not aligned on a word boundary, that is, if the low-order two bits of the

effective address are not 00, an Address Error exception is raised.

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ←GPR[rt]
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

TLB Modified exception (reserved)

Address Error exception

Architecture

188

SWL Store Word Left SWL

31 26 25 21 20 16 15 0

SWL

101010
base rt offset

6 5 5 16

Format :

SWL rt, offset(base)

Description :

Used together with SWR to store the contents of a register into four consecutive bytes of memory

when the bytes cross a word boundary. SWL stores the left part of the register into the appropriate

part of the high-order word in memory; SWR stores the right part of the register into the appropriate

part of the low-order word in memory.

This instruction generates a 32-bit effective address that can point to any byte by sign-extending the

16-bit offset and adding it to the contents of general-purpose register base. Only the one word in

memory containing the designated starting byte is modified. Depending on the starting byte, from

one to four bytes are stored.

The concept is illustrated below. This instruction (SWL) starts from the high-order (left-most) byte

of the register and stores it into the designated memory byte; it then continues storing bytes from

register to memory, proceeding toward the low-order byte of the register and the low-order byte of

the memory word, until it reaches the low-order byte of the memory word.

No Address Error instruction is raised due to misalignment.

Memory

(Big endian)

Before
storing

SWL $24,1($0)

After
storing

Address 4 4 5 6 7

Address 0 0 A B C

Address 4 4 5 6 7

Address 0 0 1 2 3

Register

A B C D $24

Architecture

189

SWL Store Word Left (cont.) SWL

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddr31..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

data ← 0 24 - 8*byte || GPR[rt]31..24-8*byte

StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

TLB Modified exception (reserved)

Address Error exception

Architecture

190

SWR Store Word Right SWR

31 26 25 21 20 16 15 0

SWR

101110
base rt offset

6 5 5 16

Format :

SWR rt, offset(base)

Description :

Used together with SWL to store the contents of a register into four consecutive bytes of memory

when the bytes cross a word boundary. SWR stores the right part of the register into the

appropriate part of the low-order word in memory; SWL stores the left part of the register into the

appropriate part of the high-order word in memory.

This instruction generates a 32-bit effective address that can point to any byte by sign-extending the

16-bit offset and adding it to the contents of general-purpose register base. Only the one word in

memory containing the designated starting byte is modified. Depending on the starting byte, from

one to four bytes are stored.

The concept is illustrated below. This instruction (SWR) starts from the low-order (right-most)

byte of the register and stores it into the designated memory byte; it then continues storing bytes

from register to memory, proceeding toward the high-order byte of the register and the high-order

byte of the memory word, until it reaches the high-order byte of the memory word.

No Address Error instruction is raised due to misalignment.

Memory

(Big endian)

Before
storing

SWR $24,4($0)

After
storing

Address 4 D 5 6 7

Address 0 0 1 2 3

Address 4 4 5 6 7

Address 0 0 1 2 3

Register

A B C D $24

Architecture

191

SWR Store Word Right (cont.) SWR

Operation :

T: vAddr ← ((offset15)16 || offset15..0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddr31..2 || (pAddr1..0

 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddr31..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

data ← GPR[rt]31-8*byte || 08*byte

StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

Exceptions :

UTLB Refill exception (reserved)

TLB Refill exception (reserved)

TLB Modified exception (reserved)

Address Error exception

Architecture

192

SYNC Synchronize SYNC

31 26 25 6 5 0

SPECIAL

000000

0

0000 0000 0000 0000 0000

SNYC

001111

6 20 6

Format :

SYNC

Description :

Interlocks the pipeline until the load, store or data cache refill operation of the previous instruction is

completed.

The R3900 Processor Core can continue processing instructions following a load instruction even if

a cache refill is caused by the load instruction or a load is made from a noncacheable area.

Executing a SYNC instruction interlocks subsequent instructions until the SYNC instruction

execution is completed. This ensures that the instructions following a load instruction are executed

in the proper sequence.

This instruction is valid in user mode.

Operation :

T: SyncOperation()

Exceptions :

None

Architecture

193

SYSCALL System Call SYSCALL

31 26 25 6 5 0

SPECIAL

000000
code

SYSCALL

001100

6 20 6

Format :

SYSCALL code

Description :

Raises a System Call exception, then immediately passes control to an exception handler. The code

field can be used to pass information to an exception handler, but the only way to have the code field

retrieved by the exception handler is to use the EPC register to load the contents of the memory word

containing this instruction.

Operation :

T: SystemCallException

Exceptions :

System Call exception

Architecture

194

XOR Exclusive Or XOR

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL

000000

rs rt rd 0

00000

XOR

100110

6 5 5 5 5 6

Format :

XOR rd, rs, rt

Description :

Bitwise exclusive-ORs the contents of general-purpose register rs with the contents of general-

purpose register rt and loads the result in general-purpose register rd.

Operation :

T: GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions :

None

Architecture

195

XORI Exclusive Or Immediate XORI

31 26 25 21 20 16 15 0

XORI

001110
rs rt immediate

6 5 5 16

Format :

XORI rt, rs, immediate

Description :

Zero-extends the 16-bit immediate value, bitwise exclusive-ORs it with the contents of general-

purpose register rs, then loads the result in general-purpose register rt.

Operation :

T: GPR[rt] ← GPR[rs] xor (016 || immediate)

Exceptions :

None

Architecture

196

Bit Encoding of CPU Instruction Opcodes

Figure A-2 shows the bit codes for all CPU instructions (ISA and extended ISA).

OPcode

28..26
31..29 0 1 2 3 4 5 6 7

0 SPECIAL BCOND J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COP0 COP1 COP2 COP3 BEQLδ BNELδ BLEZLδ BGTZLδ
3 * * * * MADD/

MADDUδ
* * *

4 LB LH LWL LW LBU LHU LWR *
5 SB SH SWL SW * * SWR CACHEδ
6 * ξ ξ ξ * * * *
7 * ξ ξ ξ * * * *

SPECIAL function

2.0
5..3 0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR * * SYSCALL BREAK SDBBPδ SYNCδ
2 MFHI MTHI MFLO MTLO * * * *
3 MULT MULTU DIV DIVU * * * *
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 * * SLT SLTU * * * *
6 * * * * * * * *
7 * * * * * * * *

BCOND

18..16
20..19 0 1 2 3 4 5 6 7

0 BLTZ BGEZ BLTZLχ BGEZLχ γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 BLTZAL BGEZAL BLTZALLχ BGEZALLχ γ γ γ γ
3 γ γ γ γ γ γ γ γ

COPz rs

23..21
25,24 0 1 2 3 4 5 6 7

0 MF γ CF γ MT γ CT γ
1 BC γ γ γ γ γ γ γ
2
3

CO

Figure A-2. Operation Code Bit Encoding

Architecture

197

COPz rt

18..16
20..19 0 1 2 3 4 5 6 7

0 BCF BCT BCFLχ BCTLχ γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ

CP0 Function

2.0
5..3 0 1 2 3 4 5 6 7

0 φ (TLBR) φ (TLBWI) φ φ φ φ (TLBWR) φ φ
1 (TLBP) φ φ φ φ φ φ φ φ
2 RFE φ φ φ φ φ φ φ
3 * φ φ φ φ φ φ DERETχ
4 φ φ φ φ φ φ φ φ
5 φ φ φ φ φ φ φ φ
6 φ φ φ φ φ φ φ φ
7 φ φ φ φ φ φ φ φ

MADD/MADDU

2.0
5..3 0 1 2 3 4 5 6 7

0 MADD MADDU γ γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ
4 γ γ γ γ γ γ γ γ
5 γ γ γ γ γ γ γ γ
6 γ γ γ γ γ γ γ γ
7 γ γ γ γ γ γ γ γ

Figure A-2. Operation Code Bit Encoding (cont)

Architecture

198

Notation :

* Reserved for future architecture implementations; use of this instruction with existing versions

raises a Reserved Instruction exception.

γ Invalid instruction, but dose not raise Reserved Instruction exception in the case of the R3900

Processor Core.

δ Valid on the R3900 Processor Core but raises a Reserved Instruction exception on the R3000A.

φ Reserved for memory management unit (MMU). Dose not raise a Reserved Instruction

exception in the case of the R3900 Processor Core.

ξ Raises a Reserved Instruction exception. Valid on the R3000A.

χ Valid on the R3900 Processor Core but invalid on the R3000A.

TMPR3901F

199

TMPR3901F

TMPR3901F

200

TMPR3901F

201

Chapter 1 Introduction

This document describes the specifications of the TMPR3901F microprocessor. The R3900 Processor Core

is incorporated into the TMPR3901F.

1.1 Features

The TMPR3901F is a general-purpose microprocessor incorporating on-chip the 32-bit R3900 Processor Core,

developed by Toshiba. In addition to the processor core it includes a clock generator, bus interface unit,

memory protection unit and debug support unit.

The TMPR3901F features are as follows.

(1) R3900 Processor Core.

• Developed by Toshiba based on the MIPS Technologies, Inc. RISC architecture.

• Adds the following enhancements to the R3000A for optimal use in embedded applications.

− Pipeline improvements

− Faster multiply operations

− Addition of multiply/add operation instructions

− Addition of Branch Likely instructions

− Addition of debug support functions

− Built-in cache memory (instruction: 4Kbytes, data: 1Kbyte)

(2) On-chip peripheral circuits

• Clock generator (internal 4x-frequency PLL; connection to crystal oscillator)

• Bus interface unit (separate 32-bit address/data bus; 4-level write buffer)

• Memory protection unit

• Debug support unit

(3) Bus interface for ease of system implementation

• Separate 32-bit address/data buses

• Single-read/single-write/burst-read bus operations

• Half-speed bus mode supported

• Operates on internal PLL clock generator and quarter-frequency crystal oscillator

• Bus arbitration and cache snoop functions, to facilitate implementation of external DMAC

• 5 V tolerant input

TMPR3901F

202

(4) Low power consumption, optimal for portable applications

• 3.3 V operation

• 600 mW (at 50 MHz operation)

• Halt, Doze, Reduced-Frequency modes supported in processor core

• PLL can be turned off externally (standby mode)

(5) Debugging support functions on chip

• Hardware break function, single-step function on chip

• External real-time debug system support

(6) Maximum operating frequency

• 50 MHz

(7) Package

• 160-pin plastic QFP (quad flat package)

TMPR3901F

203

Address
Protection

Unit

Debug
Support

Unit

R3900 Processor Core

1KB
Data

Cache

4KB
Instruction

Cache

CPU core

Bus Controller / Write Buffer

System
Interface

Interrupt
Reset

Real-time
Debugger
Interface

Synchroni-
zer

Clock
Generator

1.2 Internal Blocks

The TMPR3901F comprises the following blocks (Figure 1-1).

(1) R3900 Processor Core

(2) Clock generator

A quadruple-frequency PLL is built in and operates from an external crystal generator. For lower

power consumption, PLL oscillation can be halted externally.

(3) Bus interface unit (bus controller / write buffer)

This unit controls TMPR3901F bus operations. It includes a four-deep write buffer and has separate

32-bit data and address buses. Half-speed bus mode is supported in which bus operations run at half

the frequency of the internal clock. Bus arbitration is provided.

(4) Address protection unit

This unit will raise an exception when an attempt is made to access a predesignated address. It is

used to prevent access to certain memory areas. For example, the instructions or data in cache

memory can be protected using this nuit.

(5) Debug support unit

This unit supports a debug monitor and external real-time debugging system. A hardware break and

other functions are provided.

Figure 1-1 TMPR3901F block diagram

TMPR3901F

204

2.

TMPR3901F

205

Address
Protection

Unit

Debug
Support

Unit

R3900 Processor Core

1KB
Data

Cache

4KB
Instruction

Cache

CPU core

Bus Controller / Write Buffer

System
Interface

Interrupt
Reset

Real-time
Debugger
Interface

Synchroni-
zer

Clock
Generator

Chapter 2 Configuration

This chapter describes the configuration of the TMPR3901F. A block diagram of the TMPR3901F is shown in

Figure 2-1.

2.1 R3900 Processor Core

This is a microprocessor core developed by Toshiba based on the R3000A. (See chapter 2, "Architecture, " in

this manual). Specifications of the TMPR3901F differ somewhat from those of the R3900 Processor Core.

Following are the limitations and modifications made to the R3900 Processor Core.

2.1.1 Instruction Iimitations

The COPz, CTCz and MTCz instructions are treated as NOPs (no operation) by the R3900, and

instructions CFCz and MFCz load undefined data to general-purpose register (rt) in the TMPR3901F.

The TMPR3901F supports four coprocessor condition branch instructions: BCzT, BCzF, BCzTL and

BCzFL. Condition branch signal CPCOND[3:1] can be used with these instructions.

Figure 2-1 TMPR3901F block diagram

TMPR3901F

206

2.1.2 Address mapping

Address mapping in the TMPR3901F is performed by the direct segment mapping MMU in the R3900

Processor Core. The TMPR3901F uses the kseg2 reserved area (0xFF00 0000 - 0xFFFF FFFF) as

follows.

0xFF00 0000 - 0xFF00 FFFF address protection unit

0xFF20 0000 - 0xFF3F FFFF debug support unit

The TMPR3901F outputs bus operation signals even when it accesses the above area. The

TMPR3901F ignores bus operation input signals (ACK*, BUSERR*, etc) at that time.

2.2 Clock Generator

A quadruple-frequency PLL (phase locked loop) clock is built in and operates with an external crystal

generator. It can be connected to the TMPR3901F internal PLL clock generator and quarter-frequency

crystal oscillator.

The PLL and internal clock can be stopped with an external signal. The TMPR3901F supports a Reduced

Frequency mode to control the clock frequency of the processor core by setting the Config register RF field

(see Chapter 5 for details).

TMPR3901F

207

2.3 Bus Interface Unit (Bus Controller / Write Buffer)

The bus interface unit controls TMPR3901F bus operations. Bus operations are synchronous with the rising

edge of SYSCLK.

The bus interface unit has a four-deep write buffer. The R3900 Processor Core can complete write

operations without pipeline stall.

There may be conflicts between TMPR3901F write requests from the write buffer and read requests by the

R3900 Processor Core. The priority is shown below.

• Write request only : The TMPR3901F issues a write operation to write data from the

write buffer to an external device.

• Read request only : The TMPR3901F issues a read operation to read data from an

external device.

• Both read and write requests : The read operation has priority except in the following cases.

− The data in the write buffer to be written is at the same address as the data to be read.

− Both the data in the write buffer to be written and the data to be read are in uncached areas.

The presence of data in the write buffer can be checked with the BC0T and BC0F instructions.

Data present in write buffer : coprocessor condition is false (0)

Data not present in write buffer : coprocessor condition is true (1)

With this function, processing can wait in loop until the write buffer becomes empty using this function.

An example of this is shown below.

SW

SYNC

NOP

Loop: BC0F Loop

NOP

TMPR3901F

208

2.4 Address Protection Unit

The TMPR3901F has an address protection unit that allows two virtual address breakpoints to be set. Figure

2-2 shows a block diagram of the address protection unit.

2.4.1 Registers

(a) Break Address register (BAddr0-1)

The break address register is used to set a break address. BAddr0 is for channel 0, and

BAddr1 is for channel 1.

BAddr[31:2] (Break Address)

Address for comparison. Note that this is the virtual presegmented translation

address.

0 Always 0. Ignored on write; 0 when read.

Minv
MEn
st (1)
st (2)

Figure 2-2 Address protection unit

Channel 1

Channel 0

Conditioning

IFch
DtWr
DtRd
UsEn
KnEn

BCnt0 Register

BMsk0 RegisterBAddr0 Register

Compare

Virtual
Address (31 : 2)

OR/
XOR

BSts Register

TLB Exception

0 0BAddr

1 031 2

TMPR3901F

209

(b) Break Mask register (BMsk0-1)

The break mask register holds the bit mask used for address comparison. BMsk0 is for

channel 0, and BMsk1 is for channel 1.

BMsk[31:2] (Break Mask)

This is the bit mask for address comparison. Only those bits in the BAddr register

that have their corresponding bits set to 1 in the BMsk register are compared.

0 Always 0. Ignored on write; 0 when read.

(c) Break Control register (BCnt0-1)

The break control registers are used to set conditions for address comparison. BCnt0 is for

channel 0, and BCnt1 is for channel 1.

IFch[9] (Instruction Fetch)

If this bit is set to 1, address comparisons are made for instruction fetches.

DtWr[8] (Data Write)

If this bit is set to 1, address comparisons are made for data writes.

DtRd[7] (Data Read)

If this bit is set to 1, address comparisons are made for data read.

UsEn[6] (User Enable)

If this bit is set to 1, address comparisons are made for user mode (KUc=1).

KnEn[5] (Kernel Enable)

If this bit is set to 1, address comparisons are made for kernel mode (KUc=0).

0 Always 0. Ignored on write; 0 when read.

IFch, DtWr, DtRd, UsEn and KnEn can be set simultaneously.

31

BMsk

012

00

31

0

9 810 567 34 012

0

KnEn
UsEn
DtRd
DtWr
IFch

0 000

TMPR3901F

210

(d) Break Status register (BSts)

The break status register is used to set conditions for exception requests.

MInv [9] (Master Overlay Invert)

If this bit is set to 1, exception requests are triggered by an XOR of the channel 0 and channel

1 address comparison results.This means that an exception request occurs if the address

comparison is true (the address matches) for only one of the two channels. The exception

request does not occur if both channels have matching addresses.

If this bit is cleared to 0, exception requests are triggered by an OR of the channel 0 and

channel 1 address comparison results. This means that an exception request occurs if either

channel has a matching address.

Using this bit, a nonbreak address can be set in a break address area.

MEn [8] (Master Enable)

If this bit is set to 1, exception requests are enabled.

If this bit is cleared to 0, exception requests are disabled.

0 on reset.

St [1:0] (Status)

The St bit shows whether or not a channel had a matching address on the last memory

protection exception. St[1] is for channel 1, and St[0] is for channel 0.

If the channel address matches, the bit is set to 1; if it does not match the bit is cleared to 0.

When both channels addresses match, both bits are set to 1.

The St bits are not set when the MEn bit is 0.

The St bits are not set when the MInv bit is 1 and both channels have matching addresses.

The St bit can be cleared to 0 by writing 0 to it.

2.4.2 Memory protection exception

The R3000A compatible MMU TLB Refill exceptions are used.

A TLBL exception is signaled whenever an instruction fetch or data read violation occurs. The TLBS

exception is signaled when a data store violation occurs.

When memory protection exception occurs at the same time as a non-maskable interrupt exception

(NmI) or bus error exception (IBE, DBE), the non-maskable interrupt exception or bus error exception

is handled according to priority. However, the BSts register St bit is set to 1.

31

0

9 810 567 34 012

0

MEn
MInv

0 0 0 St00

TMPR3901F

211

2.4.3 Register address map

Seven registers associated with the memory protection scheme are mapped in from the kernel memory

space. Table 2-1 shows the addresses of these registers.

Table 2-1. Address protection unit control register addresses

Register Virtual address

BSts 0xFF00 0010

BAddr0 0xFF00 0020

Bcnt0 0xFF00 0024

BMsk0 0xFF00 0028

BAddr1 0xFF00 0030

Bcnt1 0xFF00 0034

BMsk1 0xFF00 0038

2.5 Debug Support Unit

This unit supports an external real-time debug system. It includes a hardware break and other functions. The

TMPR3901F has eight signals for this purpose. These signals should be left open when the real-time debug

system is not used.

2.6 Synchronizer

This unit synchronizes the reset input signal, interrupt input signal and coprocessor condition branch signal

with the processor clock.

(1) RESET

The RESET* signal is synchronized with the processor clock in phase with SYSCLK (Figure 2-3).

Figure 2-3 RESET* signal synchronization

SYSCLK

RESET*(external)

RESET*(internal)

TMPR3901F

212

(2) INT[5:0]*

The INT[5:0]* signal is synchronized with the processor clock in phase with SYSCLK (Figure 2-4).

Figure 2-4 INT* signal synchronization

Interrupt detection

SYSCLK

INT*(external)

INT*(internal)

(a) Full-speed bus mode

Instruction at
interrupt

handler starts

F D E M

F D E

Interrupt detection

(b) Half-speed bus mode

F D E M

F D E

SYSCLK

Processor clock

INT*(external)

Instruction at
interrupt

handler starts

INT*(internal)

TMPR3901F

213

(3) NMI*

The NMI* signal is synchronized with the processor clock in phase with SYSCLK (Figure 2-5).

Figure 2-5 NMI* signal synchronization

NMI detection

SYSCLK

NMI*(external)

NMI*(internal)

(a) Full-speed bus mode

Instruction at
interrupt

handler starts

F D E M

F D E

NMI detection

(b) Half-speed bus mode

F D E M

F D E

SYSCLK

Processor clock

NMI*(external)

Instruction at
interrupt

handler starts

NMI*(internal)

TMPR3901F

214

(4) CPCOND[3:1]

The CPCOND[3:1] signal is synchronized with the processor clock in phase with SYSCLK (Figure 2-

6).

CPCOND*(external)

CPCOND*(internal)

BCzF target instruction

BCzF

Delay slot instruction

SYSCLK

CPCOND detection

(a) Full-speed bus mode

F D E M W

F D E M W

F D E M W

(b) Half-speed bus mode

Processor clock

CPCOND*(external)

BCzF target instruction

BCzF

Delay slot instruction

SYSCLK

CPCOND detection

F D E M W

F D E M W

F D E M W

CPCOND*(internal)

Figure 2-6 CPCOND* signal synchronization

TMPR3901F

215

Chapter 3 Pins

The following table summarizes the TMPR3901F pins.

NAME I/O DESCRIPTION

A [31:2]
I/O Address bus. When TMPR3901F has bus mastership, outputs the address

to be accessed. When TMPR3901F releases bus mastership, inputs the
data cache snoop address.

BE [3:0]*

O Byte-enable signal. At read and write, indicates which bytes of the data bus
are accessed by TMPR3901F. The correspondence with the data bus is:

BE [3]* : D [31:24]
BE [2]* : D [23:16]
BE [1]* : D [15:8]
BE [0]* : D [7:0]

D [31:0] I/O Data bus.
RD* O Read signal. Indicates that a read operation is being executed.
WR* O Write signal. Indicates that a write operation is being executed.

LAST*
O Last signal. Indicates the last data transfer of a bus operation. Please use

this signal after sampling for the clock rising edge.

BSTART*
O Bus start signal. Asserted for one clock only, at the start of a bus operation.

Please use this signal after sampling for the clock rising edge.

ACK*
I Acknowledge signal. Used by external circuits to notify TMPR3901F that

the bus cycle can be completed.

BUSERR*
I Bus error signal. Used by external circuits to notify TMPR3901F of an error

in a read bus operation.
BURST* O Burst signal. Indicates that a burst-read operation is being executed.

BSTSZ [1:0]

O Burst size signal. Indicates the number of words to be read in a burst-read
operation.

SNOOP*

I Snoop signal. Used by external circuits to instruct snooping of the
TMPR3901F internal data cache. When the SNOOP* signal is asserted, if
the address on A[31:2] hits the data in the data cache, TMPR3901F
invalidates the data.

BUSREQ*
I BUS request signal. Issued by an external bus master to request bus

mastership from TMPR3901F.
* Active-low signal

BSTSZ[1] BSTSZ[0] No. of Word
L L 4
L H 8
H L 16
H H 32

TMPR3901F

216

NAME I/O DESCRIPTION

BUSGNT*
O Bus grant signal. Used by TMPR3901F to indicate it has released bus

mastership in response to a request by an external bus master.
XIN I Connect to crystal oscillator.
XOUT O Connect to crystal oscillator.
PLLOFF* I Stops internal PLL oscillation.
CLKEN I Enables internal PLL clock.

SYSCLK
O System clock signal. TMPR3901F bus operation is based on SYSCLK. The

frequency can be reduced by 1/2, 1/4 or 1/8 using reduced frequency mode.

FCLK
O Free clock signal. Outputs master clock independent of reduced frequency

mode (quadruple frequency of crystal oscillator).

FCLKEN
I Free clock enable signal. Specifies whether or not to output FCLK. Tie high

or low.
RESET* I Reset signal. When asserted for at least 12 SYSCLK, resets TMPR3901F.

NMI*
I Non-maskable interrupt signal. On transition from high to low,

TMPR3901F generates a non-maskable interrupt.

INT[5:0]*
I Interrupt signals. At low, TMPR3901F acknowledges as external interrupt.

Keep low until TMPR3901F starts interrupt handling.
HALT O Halt signal. Indicates that TMPR3901F is in halt mode.
DOZE O Doze signal. Indicates that TMPR3901F is in doze mode.
ENDIAN I Endian signal. Tie high or low.

H: Big endian
L: Little endian.

HALF*
I Bus divider signal. When low, bus operates at half frequency of system

clock (SYSCLK). Tie high or low.
CPCOND
[3:1]

I Coprocessor condition signal. Condition signal for coprocessor branch
instruction.

DCLK
PCST [2:0]
DSA0/TPC
DBGE
SDI/DINT
DRESET

− Real-time debugger interface. Connect real-time debugger, or leave these
signals open.

TEST [4:0] − Test signals. Leave these signals open.
VDD − Connect to power supply.
VDD (for PLL) − Connect to power supply. Keep away from other VDD.
VSS − Connect to ground.
VSS (for PLL) − Connect to power supply. Keep away from other VSS.
* Active-low signal

4.

TMPR3901F

217

Chapter 4 Operations

This chapter shows TMPR3901F bus operations and timing.

All TMPR3901F bus operations are synchronized with the rising edge of SYSCLK.

The bus operation pin states are as follows when no bus operations are being performed.

A [31:2] undefined

D [31:0] high impedance

BE [3:0]* H

RD*, WR* H

LAST* H

BSTART* H

BURST* H

BSTSZ [1:0] undefined

4.1 Clock

The TMPR3901F can control the clock frequency to reduce power dissipation and to simplify system design.

• Master Clock

This is the base clock of the TMPR3901F. It operates at quadruple the frequency of the crystal oscillator.

FCLK outputs the master clock signal.

• Processor Clock

This is the clock of the R3900 Processor Core. The processor clock runs at 1/1, 1/2, 1/4 or 1/8 the frequency

of the master clock accordingt to the value in the Config register RF field. Running the processor clock at

1/2, 1/4 or 1/8 the frequency of the master clock enables TMPR3901F low power dissipation (reduced

frequency mode).

• System Clock

This is the base clock of TMPR3901F bus operations. The system clock is derived from processor clock.

The system clock can be switched to half frequency with the HALF* signal (half-speed bus mode).

TMPR3901F

218

The relationship among the clocks is shown in the table below.

Master clock
(FCLK)

RF [1:0] Processor
clock

HALF* System clock
(SYSCLK)

00 1 H 1
L 1/2

01 1/2 H 1/2
1 L 1/4

10 1/4 H 1/4
L 1/8

11 1/8 H 1/8
L 1/16

TMPR3901F

219

4.2 Read Operation

The TMPR3901F supports two kinds of read operations single read and burst read .

4.2.1 Single Read

The single read operation reads four bytes or less data. It is used in the following cases.

• On a data cache miss (the data cache is not set for burst read)

• An instruction fetch or data load from an uncached area

• An instruction fetch when the instruction cache is disabled

• A data load when the data cache is disabled

Figure 4-1 shows a timing chart for a single read operation with two wait cycles.

Figure 4-1 Single-read operation (two wait cycles)

SYSCLK

A[31:2]
BE[3:0]*

RD*

BSTART*

ACK*

BUSERR*

D[31:0]

LAST*

TMPR3901F

220

At the start of a single read, the BSTART* signal is asserted for one clock cycle only. At the same

time the RD* and LAST* signals are asserted. Then the address A[31:2] and BE[3:0]* signals are

valid.

An external circuit drives the data onto the data bus and asserts an ACK* signal. The TMPR3901F

samples the ACK* signal at the rising edge of SYSCLK, confirming that it has been asserted, and

latches the data at the rising edge of the next clock.

The LAST* signal is de-asserted in the same clock cycle in which ACK* assertion is confirmed. The

RD* signal is asserted up until single read operation ends. The BE[3:0]* and address A[31:2] signals

remain valid until the clock cycle in which the data is read. The single read cycle ends with the data

read clock.

BUSERR* is valid until the clock cycle in which the single read ends (see Figure 4-2).

In the clock cycle in which the TMPR3901F samples BUSERR* to verify that it is asserted, the

single read cycle is ended and a Bus Error exception is raised.

Figure 4-2 Bus error during a single read operation

SYSCLK

A[31:2]
BE[3:0]*

RD*

BSTART*

LAST*

ACK*

BUSERR*

D[31:0]

TMPR3901F

221

4.2.2 Burst Read

Burst read operation is used to refill a multiword area in cache memory. Because the second and each

succeeding data in a burst read operation can each be read in a single cycle, multiword data can be

read in from memory very quickly in this mode.

Burst read operation is issued whenever a cache miss occurs with either the instruction cache or data

cache. When Config register DCBR is cleared to 0 (setting the data cache refill size to one word), data

cache refill is accomplished with a single read operation. The burst refill size for each burst read

operation is set in the Config register IRSize field or DRSize field. The BSTSZ[1:0] signal outputs this

value.

Figure 4-3 shows the timing for a burst read cycle. At the start of a burst read, the BSTART* signal

is asserted for one clock only. At the same time, the RD* and BURST* signals are asserted. Then

the address A[31:2] and BE[3:0]* signals are latched, and the burst length setting in the Config

register is output at BSTSZ[1:0].

The TMPR3901F confirms that ACK* has been asserted and latches the data in the next clock cycle.

Addresses are incremented by +4 at each clock in which one data read takes place. In the case of a

burst read, the ACK* signal for the next data can be sampled in the same clock cycle as a data read.

In the clock cycle in which it is confirmed that the ACK* signal is active for the second from last data,

LAST* is asserted indicating that the next data transfer is the last one. LAST* is de-asserted in the

clock cycle in which it is confirmed that the ACK* signal is active for the last data.

RD* and BURST* are de-asserted in the clock in which the last data is read. BE[3:0]* and address

A[31:2] remain valid until the clock cycle in which the last data is read. The burst read cycle ends

with the clock cycle in which the last data is read.

TMPR3901F

222

Figure 4-3 Burst read (4 words : 1 wait)

SYSCLK

A[31:2]
BE[3:0]*

RD*

BSTART*

LAST*

BURST*

BSTSZ[1:0]

ACK*

BUSERR*

D[31:0]

00

TMPR3901F

223

BUSERR* is valid until the clock cycle in which the last data is read. In the clock cycle in which the

TMPR3901F recognizes the assertion of BUSERR*, the TMPR3901F ends the burst read cycle and

raises a Bus Error exception (see Figure 4-4).

When a bus error occurs in a burst read, only those cache lines for which complete reads were

accomplished are refilled.

Figure 4-4 Bus error in burst read operation (4 words)

SYSCLK

A[31:2]
BE[3:0]*

RD*

BSTART*

LAST*

BURST*

BSTSZ[1:0]

ACK*

BUSERR*

D[31:0]

00

TMPR3901F

224

4.3 Write Operation

The TMPR3901F supports only single write operations for writes.

Figure 4-5 shows the timing for a single-write operation.

At the start of the operation, the BSTART* signal is asserted for one clock only. At the same time the WR*

and LAST* signals are asserted. Then the address A[31:2] and BE[3:0]* signals are valid.

Data is output to the data bus D[31:0] from the second clock after the start of the single-write cycle. An

external circuit latches the data and asserts an ACK* signal.

The TMPR3901F confirms the ACK* signal and on the next clock ends the single-write cycle.

The LAST* signal is deserted in the same clock cycle in which ACK* assertion is confirmed. The WR*

signal is asserted up until the single write cycle ends. The BE[3:0]*, A[31:2], and D[31:0] signals remain

valid until the end of the single write cycle.

The TMPR3901F ignores BUSERR* during a single write cycle. A single write cycle can therefore be ended

with an ACK* signal alone. Notifying the R3900 Processor Core of trouble requires asserting an interrupt

signal.

Figure 4-5 Single write operation (2 waits)

SYSCLK

A[31:2]
BE[3:0]*

WR*

BSTART*

LAST*

ACK*

D[31:0]

TMPR3901F

225

4.4 Interrupts

The TMPR3901F supports six hardware interrupts and two software interrupts. It also supports a non-

maskable interrupt. The INT[5:0]* signals can be used to raise interrupt exceptions. The NMI* signal is used to

raise a non-maskable interrupt exception. All of the interrupt signals are low-active and should be synchronous

with SYSCLK rising edge.

4.4.1 NMI*

The TMPR3901F recognizes an NMI* signal on the SYSCLK rising edge (Figure 4-6).

1 Recognize NMI* high signal.

2 Recognize NMI* transition from high to low thus invoking non-maskable interrupt.

A non-maskable interrupt occurs when the TMPR3901F recognizes a high to low transition of the

NMI* signal. The TMPR3901F registers this transition in an internal circuit. An external circuit

invokes a non-maskable interrupt exception by asserting the NMI* signal for one clock cycle however,

since the NMI* signal is valid only on a transition from high to low, it must be taken high and then low

again in order to generate successive non-maskable interrupts.

If an NMI* signal high-to-low transition is recognized during a bus operation, the non-maskable

interrupt exception occurs after completion of the bus cycle.

If an NMI* signal high-to-low transition is recognized when the bus is owned by a device other than

the TMPR3901F, the non-maskable interrupt exception occurs after the TMPR3901F has regained

mastership of the bus.

Figure 4-6 Non-maskable interrupt

SYSCLK

NIMI*

1 2

TMPR3901F

226

4.4.2 INT[5:0]*

The INT[5:0]* signals are used to invoke interrupt exceptions. These interrupts can be masked with

the IntMask field of the Status register. The TMPR3901F recognizes an INT[5:0]* signal on the

SYSCLK rising edge (Figure 4-7).

1 Recognize INT[5:0]* high signal.

2 Recognize INT[5:0]* low signal, thus invoking interrupt exception.

The TMPR3901F recognizes an INT[5:0]* low signal on the SYSCLK rising edge as shown Figure 4-

7. The INT[5:0]* signal must be kept low until the interrupt exception occurs. If the signal is asserted

and then de-asserted before a SYSCLK rising edge occurs, the interrupt will not be recognized and the

exception will not be invoked.

Furthermore, the interrupt handler in order to determine which of the INI[5:0]* interrupts has occurred

must read the status register IP field that shows the status of the INT[5:0]* signals. Therefore, the

signal invoking the interrupt must be held low until the exception occurs and the interrupt handler has

been invoked and has determined the source of the interrupt.

The INT[5:0]* signal should be de-asserted by the interrupt handler.If the signal remains asserted, the

interrupt will reoccur as soon as the handler reenables interrupts.

Figure 4-7 Interrupt

SYSCLK

INT[5:0]*

1 2

TMPR3901F

227

4.5 Bus Arbitration

4.5.1 Bus request and bus grant

An external bus master can request that the TMPR3901F grant control of the bus. This is done by

asserting the BUSREQ* signal. In response, the TMPR3901F will release the bus and assert a

BUSGNT* signal.

If BUSREQ* is asserted, while the TMPR3901F is already engaged in a bus operation cycle, the

TMPR3901F will not relinquish the bus until that cycle is completed.

Figure 4-8 shows timing for a bus request and bus grant during which the TMPR3901F relinquishes

the bus and an external bus master acquires the bus.

Figure 4-8 Bus arbitration

SYSCLK

A[31:2]
BE[3:0]*

RD*

WR*

LAST*

BURST*

BSTSZ[1:0]

BUSREQ*

BUSGNT*

SNOOP

BSTART*

MPU cycle DMA cycle
MPU
cycle

TMPR3901F

228

The BUSREQ* signal is confirmed on the rising edge of SYSCLK. If no bus operation is currently

in progress, the BUSGNT* signal is asserted in the next clock after the BUSREQ* assertion is

confirmed. The TMPR3901F stops driving the bus in the next clock, thus releasing it.

During the time the bus is released by the TMPR3901F, the pin states related to bus operation are as

follows.

BUSGNT* L

D [31:0] high impedance

BE [3:0]* high impedance

RD*, WR* high impedance

LAST* high impedance

BSTART* high impedance

BURST* high impedance

BSTSZ [1:0] high impedance

A [31:2] input

HALT, DOZE no change

4.5.2 Cache snoop

During the time the bus is released by the TMPR3901F, the on-chip data cache can be snooped. An

external circuit asserts the SNOOP* signal and drives an address on A[31:2]. The TMPR3901F

latches the address in the same clock in which it confirms the SNOOP* signal assertion. The snoop

then takes place at that address in the on-chip data cache.

If the snoop address results in a data cache hit, that cache entry is invalidated.

SNOOP* is valid only while a BUSGNT* signal is asserted.

TMPR3901F

229

4.6 Reset

The TMPR3901F can be reset with the RESET* signal. The RESET* signal must be asserted for a certain

number of R3900 Processor Core clock cycles in order for the TMPR3901F reset to take effect.

Since the RESET* signal is clock-synchronized with in the TMPR3901F, it can be asserted asynchronously .

TMPR3901F operations upon reset are as follows.

• The pipeline stalls, and TMPR3901F internal states are initialized.

• All valid bits and lock bits of the instruction and data caches are cleared.

• During reset, the states of the output pins are as follows.

A [31:2] undefined

D [31:0] undefined

BE [3:0]* H

RD*, WR* H

BURST* H

BSTSZ [1:0] undefined

LAST* H

BUSGNT* H

HALT, DOZE H

• Data in the write buffer becomes invalid.

TMPR3901F

230

4.7 Half-Speed Bus Mode

To accommodate slower peripheral circuits, the TMPR3901F offers a half-speed bus mode in which bus

operations are clocked at half the frequency of the R3900 Processor Core. This mode is selected by setting

the HALF* signal to low.

When HALF* is set to high, bus operations occur at the same frequency at which the R3900 Processor Core

operates. This is called full-speed bus mode.

When HALF* is asserted low, bus operations switch to half the frequency of R3900 Processor Core

operations. This is called half-speed bus mode.

In half-speed bus mode, the SYSCLK frequency is half that of full-speed bus mode. TMPR3901F bus

operations are always synchronized with SYSCLK.

Figure 4-9 shows a single read operation in half-speed bus mode.

The HALF* signal must be tied high or low. When changed dynamically, operation of the TMPR3901F is

undefined.

Figure 4-9 Single read operation in half-speed bus mode

Processor clock

A[31:2]
BE[3:0]*

RD*

BSTART*

ACK*

BUSERR*

D[31:0]

LAST*

SYSCLK

TMPR3901F

231

Chapter 5 Power-Down Mode

The TMPR3901F has the following four power-down modes to enable lower power dissipation through

control of the internal clock.

• Halt mode

• Standby mode

• Doze mode

• Reduced Frequency mode

5.1 Halt mode
Figure 5-1 shows a state diagram of power down mode.

The TMPR3901F stops internal operations in Halt mode to reduce power dissipation. Setting the Config

register Halt bit to 1 switches from Active mode to Halt mode. During Halt mode, the TMPR3901F will

assert the HALT signal, stall the pipeline in �holding current�status and cease to recognize bus requests.

If an instruction attempts to switch to Halt mode (by setting the Config register Halt bit to 1) during a bus

operation, the HALT signal will not be asserted until completion of the bus operation. If a switch to Halt

mode is attempted when a device other than the TMPR3901F owns the bus, the HALT signal will not be

asserted until the TMPR3901F regains bus mastership. Write operations will continue even in Halt mode, if

the write buffer contains data, until the buffer is emptied. SYSCLK and FCLK continue to run in Halt mode.

The TMPR3901F can be returned from Halt mode to Active mode, and the Halt bit cleared to 0, by asserting

the INT[5:0]*, NMI* or RESET* signals. The Status register IntMask field has no effect on the return to

Active mode from Halt mode. The TMPR3901F will execute the corresponding exception handler for any

unmasked INT[5:0]* interrupt as well as the RESET* and NMI* interrupts. When an INT[5:0]* signal is used

to return to Active mode from Halt mode, and that signal's corresponding bit is masked in the IP field of the

Status register, the TMPR3901F will resume execution of the instruction following the last instruction

executed prior to entering Halt mode.

Figure 5-1 State diagram of power-down mode

RF←not 00RF←00

Interrupt(RF≠00)

Halt←1

Doze←1

Interrupt (RF=00)

Doze
(Snoop enable)

Active

Halt
(Snoop disable)

Standby Reduced frequency
(1/2, 1/4, 1/8)

Halt←1

Doze←1

Interrupt(RF=00)

Interrupt(RF≠00)

TMPR3901F

232

The TMPR3901F sets the HALT signal according to the status of the Halt bit in the Config register.

Output signals of the memory interface during Halt mode are the same as when a bus operation is not in

progress.

TMPR3901F

233

5.2 Standby Mode

Stopping the PLL clock in the TMPR3901F results in even less power dissipation than in Halt mode. This is

referred to as standby mode.

To transit from Active mode to Standby mode, first set the Halt bit the config register to 1. Then, follow the

sequence below to empty the write buffer. Finally, set the Halt bit to 1 using the MTC0 instruction.

SYNC

NOP

Loop : BC0F Loop

NOP

Figure 5-2 shows how stop the PLL and go to Standby mode.

Figure 5-3 shows how to return from Standby mode to Halt mode.

See the TMPR3901F Technical Data sheet for the timing.

Figure 5-3 Standby mode (PLL start)

Figure 5-2 Standby mode (PLL stop)

HALT

CLKEN

SYSCLK

PLLOFF*

Tclkoff

Tplloff

Tsys

HALT

CLKEN

SYSCLK

PLLOFF*

Tsta2

INT[5:0]*
NMI*
RESET*

TMPR3901F

234

5.3 Doze Mode

In this mode, the TMPR3901F stops internal operations the same as in Halt mode to reduce power dissipation.

However, in Doze mode bus arbitration and data cache snooping can continue. Setting the Config register

Doze bit to 1 switches from Active mode to Doze mode. During Doze mode, the TMPR3901F will assert the

DOZE signal and stall the pipeline in “holding current”status.

If an instruction attempts to switch to Doze mode (by setting the Config register Doze bit to 1) during a bus

operation, the DOZE signal will not be asserted until completion of the bus operation. If a switch to Doze

mode is attempted when a device other than the TMPR3901F owns the bus, the DOZE signal will not be

asserted until the TMPR3901F regains bus mastership. Write operations will continue even in Doze made, if

the write buffer contains data, until the buffer is emptied. SYSCLK and FCLK continue to run in Doze mode.

The TMPR3901F will recognize the BUSREQ* signal the same as in Active mode and will assert the

BUSGNT* signal to release bus mastership. Data cache snooping can continue even if the TMPR3901F does

not own the bus. When the other device gives up the bus and de-asserts the BUSREQ* signal, the TMPR3901F

will then de-assert the BUSGNT* signal and regain mastership of the bus.

The TMPR3901F can be returned from Doze mode to Active mode, and the Doze bit cleared to 0, by asserting

the INT[5:0]*, NMI* or RESET* signals. The Status register IntMask field has no effect on the return to Active

mode from Doze mode. The TMPR3901F will execute the corresponding exception handler for any unmasked

INT[5:0]* interrupt as well as the RESET* and NMI* interrupts. When an INT[5:0]* signal is used to return to

Active mode from Doze mode, and that signal's corresponding bit is masked in the IP field of Status register,

the TMPR3901F will resume execution of the instruction following the last instruction executed prior to

entering Doze mode.

The TMPR3901F sets the DOZE signal according to the status of the Doze bit in the Config register.

Output signals of the memory interface during Doze mode are the same as when a bus operation is not in

progress.

TMPR3901F

235

5.4 Reduced Frequency Mode

The TMPR3901F processor clock frequency can be controlled with the Config register RF field. A slower

processor clock frequency enables lower power dissipation by the TMPR3901F.

The relationship between the RF field and processor clock is follows.

RF[1:0] processor clock/master clock

00 1/1

01 1/2

10 1/4

11 1/8

Note :The R3900 Processor Clock is limited to a minimum operation frequency 5 MHz. Please keep this in

mind when using reduced frequency mode.

	32-Bit RISC MICROPROCESSOR TLCS-R3900 FAMILY ARCHETECTURE TMPR3901F
	CONTENTS
	Architecture
	Chapter1 Introduction
	1.1 Features
	1.1.1 High-performansce RISC techniques
	1.1.2 Functions for embedded applications
	1.1.3 Low power consumption
	1.1.4 Development environment for embedded arrays and cell-based ICs

	1.2 Notation Used in This Manual

	Chapter2 Architecture
	2.1 Overview
	2.2 Registers
	2.2.1 CPU registers
	2.2.2 System control coprocessor (CP0) registers

	2.3 Instruction Set Overview
	2.4 Data Formats and Addressing
	2.5 Pipeline Processing Overview
	2.6 Memory Management Unit (MMU)
	2.6.1 R3900 Processor Core operating modes
	2.6.2 Direct segment mapping

	Chapter3 Instruction Set Overview
	3.1 Instruction Formats
	3.2 Instruction Notation
	3.3 Load and Store Instructions
	3.4 Computational Instructions
	3.5 Jump/Branch Instructions
	3.6 Special Instructions
	3.7 Coprocessor Instructions
	3.8 System Control Coprocessor (CP0) Instructions

	Chapter4 Pipeline Architecture
	4.1 Overview
	4.2 Delay Slot
	4.2.1 Delayed load
	4.2.2 Delayed branching

	4.3 Nonblocking Load Function
	4.4 Multiply and Multiply/Add Instructions (MULT,MULTU,MADD,MADDU)
	4.5 Divide Instruction (DIV,DIVU)
	4.6 Streaming

	Chapter5 Memory Management Unit (MMU9
	5.1 R3900 Processor Core Operating Modes
	5.2 Direct Segment Mapping

	Chapter6 Exception Processing
	6.1 Overview
	6.2 Exception Processing Registers
	6.2.1 Cause register (register no.13)
	6.2.2 EPC (Exception Program Counter) register (register no.14)
	6.2.3 Status register (register no.12)
	6.2.4 Cache register (register no.7)
	6.2.5 Status register and Cache register mode bit and exception processing
	6.2.6 BadVAddr (bad Virtual Address) register (register no.8)
	6.2.7 PRId (Processor Revision Identifier) register (register no.15)
	6.2.8 Config (Configuration) register (register no.3)

	6.3 Exception Details
	6.3.1 Memory location of exception vectors
	6.3.2 Address Error exception
	6.3.3 Breakpoint exception
	6.3.4 Bus Error exception
	6.3.5 Coprocessor Unusable exception
	6.3.6 Interrupts
	6.3.7 Overflow exception
	6.3.8 Reserved Instruction exception
	6.3.9 Reset exception
	6.3.10 System Call exception
	6.3.11 Non-maskable interrupt

	6.4 Priority of Exceptions
	6.5 Return from Exception Handler

	Chapter7 Caches
	7.1 Instruction Cache
	7.2 Data Cache
	7.2.1 Lock function

	7.3 Cache Test Function
	7.4 Cache Refill
	7.5 Cache Snoop

	Chapter8 Debugging Functions
	8.1 System Control Processor (CP0) Registers
	8.2 Debug Exceptions
	8.3 Details of Debug Exceptions

	Appendix A Instruction Set Details
	Instruction Classes
	Instruction Formats
	Instruction Notation Conventions
	Sign Extension and Zero Extension
	Examples of Instruction Notation
	Load and Store Instructions
	Jump and Branch Instructions
	Instruction Set
	A
	ADD
	ADDI
	ADDIU
	ADDU
	AND
	ANDI

	B
	BCzF
	BCzFL
	BCzT
	BCzTL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK

	C
	CACHE
	CFCz
	COPz
	CTCz

	D
	DERET
	DIV
	DIVU

	J
	J
	JAL
	JALR
	JR

	L
	LB
	LBU
	LH
	LHU
	LUI
	LW
	LWL
	LWR

	M
	MADD
	MADDU
	MFC0
	MFCz
	MFHI
	MFLO
	MTC0
	MTCz
	MTHI
	MTLO
	MULT
	MULTU

	N
	NOR

	O
	OR
	ORI

	R
	RFE

	S
	SB
	SDBBP
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SRA
	SRAV
	SRL
	SRLV
	SUB
	SUBU
	SW
	SWL
	SWR
	SYNC
	SYSCALL

	X
	XOR
	XORI

	Bit Encoding of CPU Instruction Opcodes

	TMPR3901F
	Chapter1 Introduction
	1.1 Features
	1.2 Internal Blocks

	Chapter2 Configuration
	2.1 R3900 Processor Core
	2.1.1 Instruction limitations
	2.1.2 Address mapping

	2.2 Clock Generator
	2.3 Bus Interface Unit (Bus Controller/Write Buffer)
	2.4 Address Protection Unit
	2.4.1 Registers
	2.4.2 Memory protection exception
	2.4.3 Register address map

	2.5 Debug Support Unit
	2.6 Synchronizer

	Chapter3 Pins
	Chapter4 Operations
	4.1 Clock
	4.2 Read Operation
	4.2.1 Single Read
	4.2.2 Burst Read

	4.3 Write Operation
	4.4 Interrupts
	4.4.1 NMI
	4.4.2 INT[5:0]

	4.5 Bus Arbitration
	4.5.1 Bus request and bus grant
	4.5.2 Cache snoop

	4.6 Reset
	4.7 Half-Speed Bus Mode

	Chapter5 Power-Down Mode
	5.1 Halt mode
	5.2 Standby Mode
	5.3 Doze Mode
	5.4 Reduced Frequency Mode

